scholarly journals Investigation of Microstructure, Phases and Micro-Hardness of Molybdenum Coatings Deposited by Flame Wire Spray on Stee

Author(s):  
Mokhtar Djendel ◽  
Omar Allaoui ◽  
Rabah Boubaaya ◽  
Samir Benaniba ◽  
Mourad Maazouz

Coating deposition on many industrial components with good microstructural, mechanical properties and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications; viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high performance wear resistant coatings. In this study, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on steel substrates using Wire flame. As-sprayed coatings were analyzed for phase using x-ray diffraction (XRD), and for microstructural using scanning electron microscopy (SEM), also the micro-hardness of coatings are measured. Results show that the coatings have good performance in terms of microstructural, mechanical properties

2014 ◽  
Vol 606 ◽  
pp. 253-256 ◽  
Author(s):  
Martin Ovsik ◽  
Petr Kratky ◽  
David Manas ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
...  

This article deals with the influence of different doses of Beta radiation to the structure and mico-mechanical properties of Low-density polyethylene (LDPE). Hard surface layers of polymer materials, especially LDPE, can be formed by radiation cross-linking by β radiation with doses of 33, 66 and 99 kGy. Material properties created by β radiation are measured by micro-hardness test using the DSI method (Depth Sensing Indentation). Individual radiation doses caused structural and micro-mechanical changes which have a significant effect on the final properties of the LDPE tested. The highest values of micro-mechanical properties were reached at radiation dose of 66 and 99 kGy, when the micro-hardness values increased by about 21%. The changes were examined and confirmed by X-ray diffraction.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1085
Author(s):  
Patricia Castaño-Rivera ◽  
Isabel Calle-Holguín ◽  
Johanna Castaño ◽  
Gustavo Cabrera-Barjas ◽  
Karen Galvez-Garrido ◽  
...  

Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5–7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.


2000 ◽  
Author(s):  
Christian Moreau ◽  
Luc Leblanc

Abstract Thermal spray coatings are used to protect surfaces against exposure to severe conditions. To insure a reliable protection, not only the structure and properties of the sprayed coatings must be optimized but also one needs to develop appropriate process control techniques to produce high performance coatings in a consistent manner, day after day. This is particularly important during plasma spraying as the wear of the electrodes affects significantly the plasma characteristics and consequently the coating properties. First, in this paper, the stability of plasma spray processes is investigated by monitoring in-flight particle characteristics and plasma fluctuations. Secondly, the possibility and advantages of controlling plasma spray processes by monitoring and regulating the condition of the sprayed particles are discussed. Finally, we will see how the properties of thermal barrier coatings and wear resistant coatings can be optimized by controlling the temperature and velocity of the sprayed particles both in the plasma spray and HVOF (high velocity oxy-fuel) processes.


2018 ◽  
Vol 18 ◽  
pp. 73-78
Author(s):  
Mokhtar Bayarassou ◽  
Mosbah Zidani ◽  
Hichem Farh

The scope of this work is to study of microstructural changes and mechanical properties during natural and artificial ageing treatment of AGS Alloy wire cold drawn with different deformation at ENICAB in Biskra. And as well to know the phase formation during different deformation of aluminum alloys wires. as well as the combined influence of the plastic deformation rate and the aging temperature. Wire section reduction shows a change in microstructure and texture. The methods of characterization used in this work are: scanning electron microscope and X-ray diffraction, micro hardness (Hv).


2019 ◽  
Vol 54 (15) ◽  
pp. 1947-1960 ◽  
Author(s):  
Lucas Ciccarelli ◽  
Frederik Cloppenburg ◽  
Sangeetha Ramaswamy ◽  
Stepan V Lomov ◽  
Aart Van Vuure ◽  
...  

Coir fibres, a byproduct of the coconut industry, have high performance qualities but are difficult to process by conventional textile methods. The purpose of the research is to combine the processibility of hemp and flax with the high-performance properties of coir to create a composite product worthy of industrial applications. The evaluation of coir fibre-reinforced composites focuses on the processibility of the coir fibre into a nonwoven, how well it interfaces with polylactic acid and an analysis of how the mechanical properties of the final product change when mixing coir with hemp and flax. The results show that the hybrid samples outperformed most of the researched values for coir composites, despite the reduced properties of control samples as in comparable research. Adding just 10% of either flax or hemp dramatically increased the mechanical properties compared to the pure coir–polylactic acid composite.


2008 ◽  
Vol 47-50 ◽  
pp. 1169-1172 ◽  
Author(s):  
Si Zhu Wu ◽  
Feng Zhang ◽  
Xiao Xiao Hou ◽  
Xiao Ping Yang

Partially aligned and oriented polyacrylonitrile(PAN)-based nanofibers were electrospun from PAN and CNTs/PAN in the solution of dimethylformamide(DMF) to manufacture the carbon nanofibers. The as-spun nanofibers were hot-stretched in a temperature controlled oven to enhance its crystallinity and molecular orientation. Therefore it were stabilized at 250 ( under a stress, and carbonized at 1000 ( in N2 atmosphere by fixing the length of the stabilized nanofiber to convert them into carbon nanofibers. With the hot-stretched process and with the content of CNTs, the mechanical properties will be enhanced correspondingly. The crystallinity of the stretched fibers confirmed by X-ray diffraction has also increased. For PAN nanofibers, the improved fiber alignment and crystallinity resulted in the increased mechanical properties, such as the modulus and tensile strength of the nanofibers. It was concluded that the hot-stretched nanofiber and the CNTs/PAN nanofibers can be used as a potential precursor to produce high-performance carbon composites.


2013 ◽  
Vol 575-576 ◽  
pp. 156-159
Author(s):  
Dou Qin Ma ◽  
Jing Pei Xie ◽  
Ji Wen Li ◽  
Ai Qin Wang ◽  
Wen Yan Wang ◽  
...  

Cu-3wt. %MoS2-7wt. %Mo and Cu-3wt. %MoS2 composites were prepared by repressing, re-sintering and vacuum hot pressing, respectively. Microstructures were characterized by optical metallographic microscope, EDS, SEM and X-ray diffraction analysis, respectively. The micro hardness, electric conductivity and density of samples were separately measured as well. Results show that the micro hardness of Cu-3wt. % MoS2-7wt. % Mo composites is about 33.3% higher than that of Cu-3wt. %MoS2 composites. The increase in micro hardness is attributed to the presence of Mo. The electric conductivity of Cu-3wt. %MoS2 and Cu-3wt. %MoS2-7wt. % Mo prepared by vacuum hot pressing were 80.6 % and 63.8% IACS, respectively, which is an increase compared with values of 80.2 % and 57.3% IACS of samples obtained by repressing and re-sintering.


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 729
Author(s):  
Renwei Xu ◽  
Peng Zhang ◽  
Hai Wang ◽  
Xu Chen ◽  
Jie Xiong ◽  
...  

An isotactic polypropylene (iPP-1) resin with low melting temperature (Tm) is synthesized by a metallocene catalyst and investigated for melt-spun fiber applications. The structure, thermal and mechanical properties, and feasibility of producing fibers of a commercial metallocene iPP (iPP-2) and a conventional Ziegler–Natta iPP (iPP-3) are carefully examined for comparison. Tm of iPP-1 is about 10 °C lower than the other two samples, which is well addressed both in the resin and the fiber products. Besides, the newly developed iPP-1 possesses higher isotacticity and crystallinity than the commercial ones, which assures the mechanical properties of the fiber products. Thanks to the addition of calcium stearate, its crystal grain size is smaller than those of the two other commercial iPPs. iPP-1 shows a similar rheological behavior as the commercial ones and good spinnability within a wide range of take-up speeds (1200–2750 m/min). The tensile property of fibers from iPP-1 is better than commercial ones, which can fulfill the application requirement. The formation of the mesomorphic phase in iPP-1 during melt spinning is confirmed by the orientation and crystallization investigation with wide angle X-ray diffraction (WAXD), which is responsible for its excellent processing capability and the mechanical properties of the resultant fibers. The work may provide not only a promising candidate for the high-performance PP fiber but also a deep understanding of the formation mechanism of the mesomorphic phase during fiber spinning.


2010 ◽  
Vol 297-301 ◽  
pp. 88-92 ◽  
Author(s):  
R. Gheriani ◽  
Rachid Halimi

Titanium carbides are well known materials with great scientific and technological interest. The applications of these materials take advantage of the fact that they are very hard, refractory and that they have metallic properties. In this work, we have studied the influence of the heat treatment temperatures (400-1000°C) on the interaction between the titanium thin films and steel substrates. Steel substrates, 100C6 type (AFNOR norms) containing approximately 1 wt % of carbon were coated at 200°C with titanium thin films by magnetron sputtering. The samples were characterized by X-ray diffraction (XRD) and Auger electron spectroscopy (AES). Vikers micro-hardness measurements carried out on the annealed samples showed that the micro-hardness increases with annealing temperature, reaches a maximum (3500 kg/mm2), then decreases progressively. The growth of micro-hardness is due to the diffusion of the carbon, and to the formation of titanium carbide. However, the decrease of micro-hardness is associated with the diffusion of iron and the formation of iron oxide (Fe2O3). At higher temperatures, we note the formation of titanium dioxide (TiO2).


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3767
Author(s):  
Ubair Abdus Samad ◽  
Mohammad Asif Alam ◽  
Arfat Anis ◽  
El-Sayed M. Sherif ◽  
Sulaiman I. Al-Mayman ◽  
...  

This paper presents the studies of the development of a high-performance epoxy coating for steel substrates. To this end, it investigated the synergistic effect of incorporating zinc oxide (ZnO) nanoparticles into nanosilica containing epoxy formulations. The mechanical properties of the epoxy coating formulations were improved by modifying the surfaces of the silica nanoparticles (5 wt.%) with 3-glycidoxypropyl trimethoxysilane, which ensured their dispersal through the material. Next, the ZnO nanoparticles (1, 2, or 3 wt.%) were incorporated to improve the corrosion performance of the formulations. The anticorrosive properties of the coatings were examined by electrochemical impedance spectroscopy (EIS) of coated mild steel specimens immersed in 3.5% NaCl solution over different time intervals (1 h to 30 days). Incorporation of the ZnO nanoparticles and the nanosilica into the coating formulation improved the corrosion resistance of the epoxy coating even after long-term exposure to saline test solutions. Finally, to evaluate how the nanoparticles affected the chemical and morphological properties of the prepared coatings, the coatings were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD).


Sign in / Sign up

Export Citation Format

Share Document