scholarly journals How does the physiological activity and growth of tomato plants react to the use of a soil-mineral compound?

2019 ◽  
Vol 13 (2) ◽  
pp. 248-258
Author(s):  
Isabella Sabrina Pereira ◽  
Evandro Binotto Fagan ◽  
Ellen Mayara Alves Cabral ◽  
Daniele Cristina Fontana ◽  
Renan Caldas Umburanas ◽  
...  

The tomato crop has a high productive potential that can be depleted by biotic and abiotic stresses. Increased plant resilience to stress conditions has been reported with foliar applications of soil-mineral compounds; however, it is necessary to better understand how plants react to the use of this compound. Thus, this study evaluated the effect of foliar applications of a soil-mineral compound on the physiological and growth attributes of tomato plants. This experiment was carried out in Lagoa Formosa/MG during 2016. Different rates of the soil-mineral compound were used during the crop cycle, forming four distinct managements. The management consisted of different doses of the mineral compound in four stages after transplanting the tomato seedlings. The experiment design used randomized blocks. The following physiological evaluations were performed: total soluble protein, hydrogen peroxide, nitrate reductase enzyme activity, urease, superoxide dismutase (SOD), peroxidase, phenylalanine ammonia lyase, and lipid peroxidation (LP). The growth assessments were plant biomass and yield. Foliar applications of the soil-mineral compound increased the activity of the SOD enzyme by 4.17 and 6.25%. The use of the soil-mineral compound also increased the LP activity and reduced the antioxidant enzyme activity. The foliar application of the soil-mineral compost at doses of 0.5, 0.750, 1.0 and 1.0 kg ha-1 at 15, 25, 40 and 60 days after transplanting, respectively, increased the yield of the table tomatoes by 20%.

Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1104
Author(s):  
Mohammed El Mehdi El Boukhari ◽  
Mustapha Barakate ◽  
Nadia Choumani ◽  
Youness Bouhia ◽  
Karim Lyamlouli

The present study investigates the effect of Ulva lactuca extract as seed-priming agent for tomato plants under optimal and salinity stress conditions. The aims of this experiment were to assess the effect of seed priming using Ulva lactuca extract in alleviating the salinity stress tomato plants were subjected to, and to find out the possible mechanism of actions behind such a positive effect via means of fractionation of the crude extract and characterization. Salinity application decreased the plant biomass and altered different physiological traits of tomato. However, the application of Ulva lactuca methanol extract (ME) and its fractions (residual fraction (RF), chloroform fraction (CF), butanol fraction (BF), and hexane fraction (HF)) at 1 mg·mL−1 as seed priming substances attenuated the negative effects of salinity on tomato seedlings. Under salinity stress conditions, RF application increased the tomato fresh weight; while ME, RF, and HF treatments significantly decreased the hydrogen peroxide (H2O2) concentration and antioxidant activity in tomato plants. The biochemical analyses of Ulva lactuca extract and fractions showed that the RF recorded the highest concentration of glycine betaine, while the ME was the part with the highest concentrations of total phenols and soluble sugars. This suggests that these compounds might play a key role in the mechanism by which seaweed extracts mitigate salinity stress on plants.


2021 ◽  
Vol 11 ◽  
Author(s):  
Marina Alfosea-Simón ◽  
Silvia Simón-Grao ◽  
Ernesto Alejandro Zavala-Gonzalez ◽  
Jose Maria Cámara-Zapata ◽  
Inmaculada Simón ◽  
...  

Agriculture is facing a great number of different pressures due to the increase in population and the greater amount of food it demands, the environmental impact due to the excessive use of conventional fertilizers, and climate change, which subjects the crops to extreme environmental conditions. One of the solutions to these problems could be the use of biostimulant products that are rich in amino acids (AAs), which substitute and/or complement conventional fertilizers and help plants adapt to climate change. To formulate these products, it is first necessary to understand the role of the application of AAs (individually or as a mixture) in the physiological and metabolic processes of crops. For this, research was conducted to assess the effects of the application of different amino acids (Aspartic acid (Asp), Glutamic acid (Glu), L-Alanine (Ala) and their mixtures Asp + Glu and Asp + Glu + Ala on tomato seedlings (Solanum lycopersicum L.). To understand the effect of these treatments, morphological, physiological, ionomic and metabolomic studies were performed. The results showed that the application of Asp + Glu increased the growth of the plants, while those plants that received Ala had a decreased dry biomass of the shoots. The greatest increase in the growth of the plants with Asp + Glu was related with the increase in the net CO2 assimilation, the increase of proline, isoleucine and glucose with respect to the rest of the treatments. These data allow us to conclude that there is a synergistic effect between Aspartic acid and Glutamic acid, and the amino acid Alanine produces phytotoxicity when applied at 15 mM. The application of this amino acid altered the synthesis of proline and the pentose-phosphate route, and increased GABA and trigonelline.


Plants ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 151 ◽  
Author(s):  
Fabián Pérez-Labrada ◽  
Elsy Rubisela López-Vargas ◽  
Hortensia Ortega-Ortiz ◽  
Gregorio Cadenas-Pliego ◽  
Adalberto Benavides-Mendoza ◽  
...  

The tomato crop has great economic and nutritional importance; however, it can be adversely affected by salt stress. The objective of this research is to quantify the agronomic and biochemical responses of tomato plants developed under salt stress with the foliar application of copper nanoparticles. Four treatments were evaluated: foliar application of copper nanoparticles (250 mg L−1) with or without salt stress (50 mM NaCl), salt stress, and an absolute control. Saline stress caused severe damage to the development of tomato plants; however, the damage was mitigated by the foliar application of copper nanoparticles, which increased performance and improved the Na+/K+ ratio. The content of Cu increased in the tissues of tomato plants under salinity with the application of Cu nanoparticles, which increased the phenols (16%) in the leaves and the content of vitamin C (80%), glutathione (GSH) (81%), and phenols (7.8%) in the fruit compared with the control. Similarly, the enzyme activity of phenylalanine ammonia lyase (PAL), ascorbate peroxidase (APX), glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) increased in leaf tissue by 104%, 140%, 26%, 8%, and 93%, respectively. Foliar spraying of copper nanoparticles on tomatoes under salinity appears to induce stress tolerance to salinity by stimulating the plant’s antioxidant mechanisms.


2019 ◽  
Vol 20 (8) ◽  
pp. 1950 ◽  
Author(s):  
Tomasa Quiterio-Gutiérrez ◽  
Hortensia Ortega-Ortiz ◽  
Gregorio Cadenas-Pliego ◽  
Alma Delia Hernández-Fuentes ◽  
Alberto Sandoval-Rangel ◽  
...  

Early blight is a disease that greatly affects Solanaceae, mainly damaging tomato plants, and causing significant economic losses. Although there are methods of biological control, these are very expensive and often their mode of action is slow. Due to this, there is a need to use new techniques that allow a more efficient control of pathogens. Nanotechnology is a new alternative to solve these problems, allowing the creation of new tools for the treatment of diseases in plants, as well as the control of pathogens. The aim of the present investigation was to evaluate the foliar application of selenium and copper in the form of nanoparticles in a tomato crop infested by Alternaria solani. The severity of Alternaria solani, agronomic variables of the tomato crop, and the changes in the enzymatic and non-enzymatic antioxidant compounds were evaluated. The joint application of Se and Cu nanoparticles decreases the severity of this pathogen in tomato plants. Moreover, high doses generated an induction of the activity of the enzymes superoxide dismutase, ascorbate peroxidase, glutathione peroxidase (GPX) and phenylalanine ammonia lyase in the leaves, and the enzyme GPX in the fruit. Regarding non-enzymatic compounds in the leaves, chlorophyll a, b, and totals were increased, whereas vitamin C, glutathione, phenols, and flavonoids were increased in fruits. The application of nanoparticles generated beneficial effects by increasing the enzymatic and non-enzymatic compounds and decreasing the severity of Alternaria solani in tomato plants.


2021 ◽  
pp. 1-18
Author(s):  
Pedro Gómez-Vera ◽  
Héctor Blanco-Flores ◽  
Ana Marta Francisco ◽  
Jimmy Castillo ◽  
Wilmer Tezara

Summary Studies on the effect of nanofertilizers (NF) in physiological performance of plants is scarce, especially that related to substances encapsulated into silicon dioxide (SiO2) nanoparticles in cocoa plants. The effect of foliar application of SiO2-NF on nutrient contents, gas exchange, photochemical activity, photosynthetic pigments, total soluble protein (TSP), photosynthetic nitrogen use efficiency (PNUE), and growth in seedlings of two cocoa clones (OC-61 and BR-05) in a greenhouse was assessed. Spraying with SiO2-NF increased net photosynthetic rate (A) by 16 and 60% and electron transport rate (J) by 52 and 162% in clones OC-61 and BR-05, respectively, without changes in photosynthetic pigment concentration in either clone. The SiO2-NF caused a decrease of 37 and 22% in stomatal conductance in OC-61 and BR-05, respectively; a similar trend was observed in transpiration rate, causing an increase of 42 and 100% in water use efficiency in OC-61 and BR-05, respectively. In both clones, diameter of graft increased on average 28% with SiO2-NF. Higher photosynthetic capacity was related to an increase in leaf N, P, and TSP. A significant reduction in PNUE (A/N ratio) was found in OC-61, whereas in BR-05 PNUE increased after spraying with SiO2-NF. Overall, spraying with SiO2-NF had a positive effect on photosynthetic processes in both cocoa clones, associated with an increase in nutrients content, which translated into improved growth. A differential physiological response to spraying with SiO2-NF between clones was also found, with BR-05 being the clone with a better physiological response during the establishment and development stages.


2008 ◽  
Vol 43 (8) ◽  
pp. 1017-1023 ◽  
Author(s):  
Daniel Oliveira Jordão do Amaral ◽  
Marleide Magalhães de Andrade Lima ◽  
Luciane Vilela Resende ◽  
Márcia Vanusa da Silva

The objective of this work was to determine the transcript profile of tomato plants (Lycopersicon esculentum Mill.), during Fusarium oxysporum f. sp. lycopersici infection and after foliar application of salicylic acid. The suppression subtractive hybridization (SSH) technique was used to generate a cDNA library enriched for transcripts differentially expressed. A total of 307 clones was identified in two subtractive libraries, which allowed the isolation of several defense-related genes that play roles in different mechanisms of plant resistance to phytopathogens. Genes with unknown roles were also isolated from the two libraries, which indicates the possibility of identifying new genes not yet reported in studies of stress/defense response. The SSH technique is effective for identification of resistance genes activated by salicylic acid and F. oxysporum f. sp. lycopersici infection. Not only the application of this technique enables a cost effective isolation of differentially expressed sequences, but also it allows the identification of novel sequences in tomato from a relative small number of sequences.


2015 ◽  
Vol 4 (2) ◽  
pp. 96-99
Author(s):  
Tatyana Stepanovna Kolmykova ◽  
Ekaterina Vladimirovna Klokova ◽  
Elvera Shagidulovna Sharkaeva

Activity of the antioxidant system is one of the mechanisms for the protection of plants against adverse environmental factors. Catalase - a primary antioxidant enzymes. Her change may serve as an indicator of plant resistance to stress. Studied catalase activity in tomato plants of different varieties under the action of low temperatures and cytokinin 6-BAP preparation. The object of investigation used 24- and 27-day-old tomato plant varieties Podarochnyi, Patrice, Volgogradskyi. Found that under the action of low temperatures, the decrease in positive catalase activity: 10-30% at 10 C and 40-60% at a temperature of 3 C as compared with non-refrigerated plants. Less resistant to hyperthermia were plant varieties Patrice. With increasing length of vegetation at a temperature of 25 C in 27-day-old tomato plants resulted in a minor increase in the activity of the enzyme. After the end of the cooling observed recovery of enzyme activity only at grades Podarochnyi and Patrice. This indicates that the indicated tomato varieties possess a high ability to restore metabolic processes. Using 6-regulator cytokinin BAP increased catalase activity in tomato plants as prolonged or momentary cooling. Especially responsive to the drug were plant varieties Patrice and Volgogradskyi. And 6-BAP helped repair catalase activity in 27-day-old plants in the aftereffect of cold stress. Were more sensitive plant varieties Podarochnyi.


2021 ◽  
Vol 35 (2) ◽  
Author(s):  
Amine Khoulati ◽  
E. Saalaoui

An experiment was carried out in a greenhouse to study the effect of aqueous extracts of Crocus sativus L. by-products on tomato plants. Three concentrations of tepals and corms were used by fertigation: 1 g/L, 2 g/L, and 3 g/L. The aqueous extract of the stigmas was used as a foliar application at 0.6 g/L. The experiment was carried out in a completely randomized block with three repetitions for each concentration. The concentration of tepal extract at 3 g/L significantly (p≤0.05) increased the plants' height, the chlorophyll a, b content. The same results were observed for the foliar treatment with stigmas; however, there was no effect of tepal extract on the carotenoid content. On the other hand, the concentration 2 g/L of the corms extract had a positive impact (p≤0.05) in the chlorophyll b content while the concentration of 3 g/L increased the plant's height, the chlorophyll a (p≤0.05). Current results indicate that Crocus sativus by-products could improve certain physiological aspects of the recipient plants and new and natural biostimulants.


2015 ◽  
Vol 26 (2) ◽  
pp. 21-25 ◽  
Author(s):  
Marcelina Krupa-Małkiewicz ◽  
Beata Smolik ◽  
Dominik Ostojski ◽  
Maja Sędzik ◽  
Justyna Pelc

AbstractThe aim of this study is to determine the effect of both NaCl and KCl alone and in comparison to AsA on the morphological and some biochemical parameters of Oxheart and Vilma cultivars of tomato under laboratory and field conditions. A combination of salt applied in the laboratory experiment caused a significant effect on seed germination and root and shoot length and a significant reduction of Chl a, Chl b and Car contents in 14-day-old tomato seedlings. However, seedlings of cultivar Vilma were characterised by higher tolerance to applied salt stress.NaCl caused a significant decrease in Chl a, Chl b and Car, and an increase in Pro and MDA content in the leaves of Vilma cultivar under field conditions. Besides, tomato plants cv. Vilma treated with NaCl alone or NaCl with ascorbic acid developed longer roots, from 48 to 73%, compared to the control.


Sign in / Sign up

Export Citation Format

Share Document