scholarly journals Current status of plant pathogens of agricultural importance for Colombia. A review

Author(s):  
Tiago Miguel Marques Monteiro Amaro ◽  
Jonathan Cope ◽  
Bárbara Franco-Orozco

Plant disease still plays a major role in limiting agricultural production worldwide. Pathogens and pests reduce crop yield and can cause large reductions in crop quality. Colombia is no exception as it contends with many devastating pathogens that present a major threat to the country’s agricultural sector. This review is important because it highlights four of the more damaging pathogens that affect the economics of important crops in Colombia - Xanthomonas phaseoli pv. manihotis (Xpm), Fusarium oxysporum f. sp. cubense (Foc), Phytophthora palmivora, and Hemileia vastatrix. This paper was based on an extensive literature search for plant diseases in Colombia in databases such as PubMed and Google Scholar. Moreover, this search was complemented with research on crop production in the country in databases made available by the Food and Agriculture Organization of the United Nations (FAO). The four pathogens reviewed in this paper were chosen not only because of their current devastating effects on Colombia’s agricultural production but also because of their potential to cause further damage in the near future. Understanding the current situation of these crop pathogens in Colombia is imperative for state directives aimed at developing informed and efficient control strategies.

Agriculture is the backbone of our nation. Our country’s growth is highly dependent on the growth of agriculture. Hence, it is mandatory that we need to identify and incorporate new technologies and solutions to protect and improvise problems faced in cultivation by the agriculturalists. In agricultural sector one of the major reasons of losses are due to pests and plant diseases. The harm and impairment caused by insect pests is one of the fundamental factors affecting the crop production. Pests and insects can have adverse effect on agricultural production in turn affecting market access, natural environment, and our lifestyle. The objective of this work is focused on detecting and eliminating the underground worms that causes damage to the crops. An unmanned embedded system is proposed that automatically detects the existence of underground worms in the soil that are not visible to human eyes. This system helps in identifying the existence of worms in the soil using a thermocouple device and eradicates them by instantiating the pesticide on them.


2020 ◽  
pp. 22-39
Author(s):  
I. L. Kovalev

Some basic directions in the global development of agricultural machinery and global trends in the dig-ital transformation of agriculture are reviewed and identified based on analysis of reports and articles by well-known expert organizations in this field. The analysis of the technical re-equipment of the Belarusian crop production over the past decade has been carried out, the directions of digitalization of agricultural production of the republic identified by the current State programs in the agricultural sector and Decree of the President of the Republic of Belarus No. 8 "On the Development of the Digital Economy" have been determined.


Author(s):  
I.L. Kovalev

Some basic directions in the global development of agricultural machinery and global trends in the digital transformation of agriculture are reviewed and identified based on analysis of reports and articles by well-known expert organizations in this field. The analysis of the technical re-equipment of the Belarusian crop production over the past decade has been carried out, the directions of digitalization of agricultural production of the republic identified by the current State programs in the agricultural sector and Decree of the President of the Republic of Belarus No. 8 “On the Development of the Digital Economy” have been determined.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 536
Author(s):  
Marinos Markou ◽  
Anastasios Michailidis ◽  
Efstratios Loizou ◽  
Stefanos A. Nastis ◽  
Dimitra Lazaridou ◽  
...  

Agriculture is highly dependent on climate change, and Cyprus especially is experiencing its impacts on agricultural production to a greater extent, mainly due to its geographical location. The adaptation of farming to the effects of global climate change may lead to the maximization of agricultural production, which is an important and desirable improvement. The main aim of this paper is to rank and quantify the impacts of climate change on the agricultural sector of Cyprus, through a multi-round Delphi survey seeking a consensus agreement in a group of experts. A multidisciplinary group of 20 experts stated their willingness-to-pay for various impacts of climate change. By applying this method, the individual impacts of climate change on crop production and water resources were brought into the modeling effort on equal footing with cost values. The final cost impact estimate represents the total estimated cost of climate change in the agricultural sector. According to the results, this cost reaches EUR 25.08 million annually for the agricultural sector, and EUR 366.48 million for the whole country. Therefore, it is expected that in the seven-year programming period 2014–2020 the total cost of climate change on agriculture ranges from EUR 176 to EUR 2565 million. The most significant impacts are due to the increasing level of CO2 in the atmosphere and the burden of biodiversity and ecosystems.


2017 ◽  
Vol 17 (1) ◽  
pp. 31-35
Author(s):  
B Oyuntogtokh ◽  
M Byambasuren

At present, plant diseases caused by soil borne plant pathogens have major constraints on crop production. Which include genera Fusarium spp, Phytophtora spp, Sclerotinia and Altenaria. Due to this reason, chemical fungicides are routinely used to control plant disease, which is also true in Mongolian case. However, use of these chemicals has caused various problems including environmental pollution with consequence of toxicity to human health also resistance of some pathogens to these fungicides are present. Fortunately, an alternative method to reduce the effect of these plant pathogens is the use of antagonist microorganisms. Therefore, some species of the genus Bacillus are recognized as one of the most effective biological control agent.Our research was focused to isolate Bacillus licheniformis, with antifungal potential, from indigenous sources. In the current study, 28 bacterial cultures were isolated from soil and fermented mare’s milk also named as koumiss. Isolated bacterial cultures were identified according to simplified key for the tentative identification of typical strain of Bacillus species. As a result 8 strains were positive and further screened for antifungal activity against Fusarium spp and Alternaria solani. Out of these 8 strains 5 strains are selected based on their high effectiveness against fungal pathogens and for further confirmation Polymerase Chain reaction run for effective bacterial strains using specific primers B.Lich-f and B.Lich-r. 


2017 ◽  
Vol 108 (3) ◽  
pp. 413-420 ◽  
Author(s):  
Arnika Przybylska ◽  
Żaneta Fiedler ◽  
Patryk Frąckowiak ◽  
Aleksandra Obrępalska-Stęplowska

AbstractThrips palmi and Frankliniella occidentalis (order Thysanoptera) are thrips species that represent major plant pests. They are polyphagous insects capable of adversely affecting crop production. As such, in the European Union, these thrips species should be regulated as quarantine organisms. T. palmi and F. occidentalis can cause considerable damage to susceptible plants by feeding on them and transmitting several viruses responsible for serious plant diseases. Successful pest control strategies are based on an early, fast, and reliable diagnosis, which precedes the selection of appropriate steps to limit the effects of harmful organisms. We herein describe a novel diagnostic approach that enables the sensitive and species-specific detection (and differentiation) of these pests in a duplex polymerase chain reaction assay, which was adapted for both standard and real-time quantitative assays. Our method is based on the amplification of a 5.8S-internal transcribed spacer 2 ribosomal DNA fragment that is conserved between T. palmi and F. occidentalis.


Acta Naturae ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 46-59
Author(s):  
Pavel A. Nazarov ◽  
Dmitry N. Baleev ◽  
Maria I. Ivanova ◽  
Luybov M. Sokolova ◽  
Marina V. Karakozova

In recent years, there has been an increase in the number of diseases caused by bacterial, fungal, and viral infections. Infections affect plants at different stages of agricultural production. Depending on weather conditions and the phytosanitary condition of crops, the prevalence of diseases can reach 7080% of the total plant population, and the yield can decrease in some cases down to 8098%. Plants have innate cellular immunity, but specific phytopathogens have an ability to evade that immunity. This article examined phytopathogens of viral, fungal, and bacterial nature and explored the concepts of modern plant protection, methods of chemical, biological, and agrotechnical control, as well as modern methods used for identifying phytopathogens.


Author(s):  
Jayant Yadav ◽  
Poonam Jasrotia ◽  
Ajay Kumar Bhardwaj ◽  
Prem Lal Kashyap ◽  
Sudheer Kumar ◽  
...  

 Nanotechnology is a rapidly evolving field that has the potential to revolutionise food systems and counter the present-day challenge of food security. It envisages taking agriculture from the era of indiscriminate natural resource use and environmental degradation to the brave new world of advanced systems with enhanced material use efficiency and targeted applications to reduce crop losses caused due to abiotic-biotic stresses as well as to give due considerations to the environment. To manage plant diseases and insect pests, pesticides are inevitably used in agriculture. However, the higher dosage of these chemicals on a per hectare basis has resulted in many environmental and health hazards. To tackle the conventional pesticide related issues, a new field of science called nanotechnology has led to the development of nanopesticides that have less active ingredients, but better efficiency. The nanopesticides contain the carrier molecule or the active nanosized ingredient with a very high surface area to the volume property that provides them unique exploitable-advantages. Several formulations, viz., nanoemulsions, nanosuspensions, nanogels, metal compound-based nanopesticides, have been developed for different modes of action and vivid applications. The biggest advantage comes due to the small size of the particles that help in properly spreading the ingredients on the pest surface and, thus, producing a better action than conventional pesticides. The use of nanoparticles in the form of nanopesticides, nanofertilisers, and nano delivery systems is on the increase day by day due to their higher efficiency and reduced dosage requirements. However, human beings and other organisms are also getting exposed to the nano-entities during the application or afterwards. The interactions of these engineered nano-entities with biological systems are relatively unknown thus far. Therefore, before their wider usage in crop production and protection, a better understanding of their interactions, and adverse effects, if any, is also crucial for a sustainable transition.  


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1482 ◽  
Author(s):  
Petr Procházka ◽  
Vladimír Hönig ◽  
Mansoor Maitah ◽  
Ivana Pljučarská ◽  
Jakub Kleindienst

The primary goal of this article is to evaluate water scarcity in selected countries of the Middle-East and assess the impact on agricultural production. To begin with, the Weighted Anomaly Standardized Precipitation (WASP) Index from 1979 to 2017 was spatially computed for Iran, Iraq and Saudi Arabia. In order to demonstrate the effect of reduced levels of water, the water shortage situation in cities with the population higher than one million was examined. This was accomplished by utilizing the Composite Index approach to make water related statistics more intelligible. A projection for the years of 2020 to 2030 was created in order to demonstrate possible changes in the supply and demand for water in selected countries of the Middle-East. In regards to evaluating the economic effects of water shortages on agricultural sector, effects of lower precipitation on agricultural production in Iran, Iraq and Saudi Arabia were estimated. With ever-increasing urbanization, all countries are currently experiencing a moderate to high water risk. Our research points to excessively high water stress for most analyzed cities through the year 2030. Also, it is demonstrated how much precipitation decreases influence agricultural production in Iran, Iraq and Saudi Arabia. From the analyzed countries, some evidence is found that precipitation negatively influences crop production, primarily for Iran.


BioTechniques ◽  
2020 ◽  
Vol 69 (6) ◽  
pp. 469-477
Author(s):  
Yen-Wen Kuo ◽  
Bryce W Falk

Plant diseases caused by a variety of pathogens can have severe effects on crop plants and even plants in natural ecosystems. Despite many effective conventional approaches to control plant diseases, new, efficacious, environmentally sound and cost-effective approaches are needed, particularly with our increasing human population and the effects on crop production and plant health caused by climate change. RNA interference (RNAi) is a gene regulation and antiviral response mechanism in eukaryotes; transgenic and non transgenic plant-based RNAi approaches have shown great effectiveness and potential to target specific plant pathogens and help control plant diseases, especially when no alternatives are available. Here we discuss ways in which RNAi has been used against different plant pathogens, and some new potential applications for plant disease control.


Sign in / Sign up

Export Citation Format

Share Document