Peach rust progress and its interference with vegetative plant growth and yield in two production systems in Brazil

2021 ◽  
pp. 273-282
Author(s):  
L.S. Kowata-Dresch ◽  
L. Amorim ◽  
L.L. May-De Mio
HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 628-632 ◽  
Author(s):  
Henrike Perner ◽  
Dietmar Schwarz ◽  
Eckhard George

Organic horticultural production systems often are characterized by the use of beneficial soil microorganisms because the application of soluble inorganic P or N fertilizers is not endorsed. Due to the limited supply of soluble nutrients in organic production systems, nutrient deficiency may limit plant growth and yield. The sole use of peat for pot-based cultures is also discouraged in organic production systems. Therefore, we have studied viable alternatives for highly soluble fertilizers and pure peat substrates using leek [Allium ampeloprasum L. var. Porrum] as a test plant. Plants were grown on peat-based substrates with different rates of compost additions, and with and without inoculation with arbuscular mycorrhizal (AM) fungi. Inoculation with a commercial AM fungus inoculum resulted in colonization rates of up to 70% of total root length, whereas not inoculated plants remained free of root colonization. Mycorrhizal fungus colonization increased shoot Zn and K concentrations, but did not significantly affect shoot dry matter or shoot N and P concentrations. In contrast, compost addition increased plant growth, and also increased P and K concentrations in plants. We conclude that plants with high rates of mycorrhizal colonization can be obtained on peat-based substrates, but that under these conditions plants may not consistently benefit in growth from the mycorrhizal symbiosis. In contrast, additions of compost are a possible means to improve the substrate quality in organic horticultural production.


2014 ◽  
Vol 14 (1) ◽  
pp. 57-63
Author(s):  
Andi Khaeruni ◽  
Abdul Rahim ◽  
Syair Syair ◽  
Adriani Adriani

ABSTRACTInduced resistance to bacterial leaf blight disease in rice field by indigenous rhizobacteria.  Bacterial leaf blight is the most important disease on paddy at Southeast Sulawesi. Utilization of biological agents that induce plant resistance is an alternative tool to control bacterial leaf blight disease on paddy. The aim of  the experiment was obtain rhizobacteria that were able to stimulate the growth of paddy plants as well induce plant resistance towards bacterial leaf blight in the field. All experiment units were arranged with a factorial design in a randomized complete block design. The first factor was the rhizobacteria isolates, consisting 4 treatments, i.e: without rhizobacteria (R0), isolate P11a (R1), isolate PKLK5 (IR2), and  mixture P11a and PKLK5 (R3), the second factor is paddy varieties, (V1): IR64 variety, (V2): Cisantana variety. The pathogen was inoculated on leaf when 45 day after crop.  Weekly observation of disease severity, vegetative plant growth (leaf and stem numbers), and yield were conducted. The results showed that the 10 isolates of rhizobacteria tested were able to induce plant resistance toward bacterial leaf blight, stimulated vegetative growth as well as increased yield of paddy plant. Rhizobacteria application could increase the resistance of paddy toward Xanthomonas oryzae pv. oryzae. The application rhizobacteria could increase the vegetative plant growth, application  mixture P11a and PKLK5 isolates showed higher resistance than single application in terms of plant growth and yield, both IR64 and Cisantana varietes


2015 ◽  
Vol 33 (4) ◽  
pp. 422-427
Author(s):  
Francieli L Cardoso ◽  
Jerônimo L Andriolo ◽  
Miriane Dal Picio ◽  
Marcieli Piccin ◽  
Jéssica M Souza

ABSTRACT: The objective of this research was to test the hypothesis that when lettuce plants grow under root confinement, development and yield is reduced and that such negative effects may be compensated by increasing nitrogen availability in the rooting media. The experiment was conducted between August 11st and September 23rd 2011. Lettuce transplants, cultivar Stella, bearing five leaves, were planted in pots using sand as substrate. Treatments were three root confinement levels and five N concentrations in the nutrient solution, in a 3x5 factorial randomized experimental design with four replications. Root confinements were simulated by pot sizes of 2.5 dm³ (no confinement, the control); 1.0 dm³ (moderate) and 0.4 dm³ (severe). Nitrogen concentrations were: 5.55 (C1), 8.05 (C2), 10.55 (C3), 13.05 (C4) and 15.55 (C5) mmol/L. Interactions were observed between confinement levels and N concentrations. Plants grown under severe root confinement supplied by the nutrient solution at the concentration of 10.55 mmol/L of N reached leaf growth similar to those under no root confinement at 5.55 mmol/L of N. Increasing the N concentration in the nutrient solution enhanced shoot growth but decreased root growth. In lettuce plants grown under root confinement, plant growth is reduced and it is not compensated by increasing N fertilization rates. In both horticultural conventional or soilless production systems, managing practices for stimulate root growth has to be considered to maximize lettuce plant growth and nitrogen use efficiency.


1996 ◽  
Vol 6 (3) ◽  
pp. 177-181 ◽  
Author(s):  
Laurie Hodges ◽  
James R. Brandle

Windbreaks reduce wind speed and modify the microclimate in sheltered areas. Many producers use wind barriers in their production systems, but few producers recognize all of the benefits available or understand the principles involved in windbreak function and design. Wind has direct and indirect effects on plant growth and development. Direct effects include soil abrasion, increased transpiration, and lodging. Indirect effects are based on changes in the crop microclimate, which influence plant growth and yield. Windbreaks increase soil and air temperatures and can extend the growing season in sheltered areas, resulting in increased crop development, earlier crop maturity, and market advantage. Plant-water relations and irrigation efficiency are improved by shelter. Overall, modifications to the microclimate in sheltered areas contribute to 5% to 50% higher crop yields. Winds in excess of about 5 m·s−1 (1.0 m·s−1 = 2.25 miles/h; miles/h × 0.447 = m·s−1) result in wind erosion and soil abrasion and may cause a loss of crop stand. Wind speeds below 5 m·s−1 may have an equally adverse impact on crop quality and marketable yield. In both cases, wind-breaks can reduce damage effectively in sheltered areas. Wind protection reduces certain problems associated with plasticulture under windy conditions.


2020 ◽  
Author(s):  
Wawan Sulistiono ◽  
Taryono

The role of mycorrhizae in plant growth is well known, such as the ability to increase nutrient uptake, especially phosphate (P), drought tolerance, and resistance to pathogens. It is necessary to understand the application of arbuscular mycorrhizal technology in industrial plant production systems and their impact on agriculture systems. Large-scale nurseries of plantations require proper mycorrhizal application techniques. The relationship of mycorrhizal infection with plant yield (biomass) is known and in the next step, appropriate application time is needed to increase the effectiveness of mycorrhizae in plant growth and yield. Application of mycorrhizal inoculum was more effective in increasing the biomass of sugarcane stem weight to reach 61% with an increase in infection of 41.3%. In addition, the mycorrhizal application increases the root growth of sugarcane seedlings. The root growth promoting ability is important to increase the initial growth of plants after transplanting in dry land under the influence of drought stress, limited nutrients. The application of this technology is expected to increase plant growth, facilitate the maintenance and efficiency of cultivation on an industrial scale.


1970 ◽  
Vol 17 ◽  
pp. 17-22 ◽  
Author(s):  
Kamal Singh ◽  
A. A. Khan ◽  
Iram Khan ◽  
Rose Rizvi ◽  
M. Saquib

Plant growth, yield, pigment and protein content of cow-pea were increased significantly at lower levels (20 and 40%) of fly ash but reverse was true at higher levels (80 and 100%). Soil amended by 60% fly ash could cause suppression in growth and yield in respect to 40% fly ash treated cow-pea plants but former was found at par with control (fly ash untreated plants). Maximum growth occurred in plants grown in soil amended with 40% fly ash. Nitrogen content of cow-pea was suppressed progressively in increasing levels of fly ash. Moreover,  Rhizobium leguminosarum  influenced the growth and yield positively but Meloidogyne javanica caused opposite effects particularly at 20 and 40% fly ash levels. The positive effects of R. leguminosarum were marked by M. javanica at initial levels. However, at 80 and 100% fly ash levels, the positive and negative effects of R. leguminosarum and/or M. javanica did not appear as insignificant difference persist among such treatments.Key words:  Meloidogyne javanica; Rhizobium leguminosarum; Fly ash; Growth; YieldDOI: 10.3126/eco.v17i0.4098Ecoprint An International Journal of Ecology Vol. 17, 2010 Page: 17-22 Uploaded date: 28 December, 2010  


Author(s):  
Mohammad Faizan ◽  
Fangyuan Yu ◽  
Chen Chen ◽  
Ahmad Faraz ◽  
Shamsul Hayat

: Abiotic stresses arising from atmosphere change belie plant growth and yield, leading to food reduction. The cultivation of a large number of crops in the contaminated environment is a main concern of environmentalists in the present time. To get food safety, a highly developed nanotechnology is a useful tool for promoting food production and assuring sustainability. Nanotechnology helps to better production in agriculture by promoting the efficiency of inputs and reducing relevant losses. This review examines the research performed in the past to show how zinc oxide nanoparticles (ZnO-NPs) are influencing the negative effects of abiotic stresses. Application of ZnO-NPs is one of the most effectual options for considerable enhancement of agricultural yield globally under stressful conditions. ZnO-NPs can transform the agricultural and food industry with the help of several innovative tools in reversing oxidative stress symptoms induced by abiotic stresses. In addition, the effect of ZnO-NPs on physiological, biochemical, and antioxidative activities in various plants have also been examined properly. This review summarizes the current understanding and the future possibilities of plant-ZnO-NPs research.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1152
Author(s):  
Rebekah Waller ◽  
Murat Kacira ◽  
Esther Magadley ◽  
Meir Teitel ◽  
Ibrahim Yehia

Recognizing the growing interest in the application of organic photovoltaics (OPVs) with greenhouse crop production systems, in this study we used flexible, roll-to-roll printed, semi-transparent OPV arrays as a roof shade for a greenhouse hydroponic tomato production system during a spring and summer production season in the arid southwestern U.S. The wavelength-selective OPV arrays were installed in a contiguous area on a section of the greenhouse roof, decreasing the transmittance of all solar radiation wavelengths and photosynthetically active radiation (PAR) wavelengths (400–700 nm) to the OPV-shaded area by approximately 40% and 37%, respectively. Microclimate conditions and tomato crop growth and yield parameters were measured in both the OPV-shaded (‘OPV’) and non-OPV-shaded (‘Control’) sections of the greenhouse. The OPV shade stabilized the canopy temperature during midday periods with the highest solar radiation intensities, performing the function of a conventional shading method. Although delayed fruit development and ripening in the OPV section resulted in lower total yields compared to the Control section (24.6 kg m−2 and 27.7 kg m−2, respectively), after the fourth (of 10 total) harvests, the average weekly yield, fruit number, and fruit mass were not significantly different between the treatment (OPV-shaded) and control group. Light use efficiency (LUE), defined as the ratio of total fruit yield to accumulated PAR received by the plant canopy, was nearly twice as high as the Control section, with 21.4 g of fruit per mole of PAR for plants in the OPV-covered section compared to 10.1 g in the Control section. Overall, this study demonstrated that the use of semi-transparent OPVs as a seasonal shade element for greenhouse production in a high-light region is feasible. However, a higher transmission of PAR and greater OPV device efficiency and durability could make OPV shades more economically viable, providing a desirable solution for co-located greenhouse crop production and renewable energy generation in hot and high-light intensity regions.


Sign in / Sign up

Export Citation Format

Share Document