Biological role of miRNA-146a at virus infections. Modern strategy of search of new safe pharmacological agents for treatment

2021 ◽  
Vol 19 (2) ◽  
pp. 145-174
Author(s):  
Petr D. Shabanov ◽  
Vladimir I. Vashchenko

Cellular microRNAs (miRNAs) were identified as a key player in the posttranscriptional regulation of cellular-genes regulatory pathways. Here, we review the current knowledge on the interaction between RNA viruses and cellular miRNAs. We also discuss how cell and tissue-specific expression of miRNAs can directly affect viral pathogenesis. They also emerged as a significant regulator of the immune response. In particular, miR-146a acts as an importance modulator of function and differentiation cells of the innate and adaptive immunity. It has been associated with disorder including cancer and viral infections. Given its significance in the regulation of key cellular processes, it is not surprising which virus infection have found ways to dysregulation of miRNAs. miR-146a has been identified in exosomes (exosomal miR-146a). After the exosomes release from donor cells, they are taken up by the recipient cell and probably the exosomal miR-146a is able to modulate the antiviral response in the recipient cell and result in making them more susceptible to virus infection. In this review, we discuss recent reports regarding miR-146a expression levels, target genes, function, and contributing role in the pathogenesis of the viral infection and provide a clue to develop the new preventive and therapeutic strategies for medical treatment viral disease, and СOVID-19.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Carolina Ballén-Taborda ◽  
Germán Plata ◽  
Sarah Ayling ◽  
Fausto Rodríguez-Zapata ◽  
Luis Augusto Becerra Lopez-Lavalle ◽  
...  

The study of microRNAs (miRNAs) in plants has gained significant attention in recent years due to their regulatory role during development and in response to biotic and abiotic stresses. Although cassava (Manihot esculentaCrantz) is tolerant to drought and other adverse conditions, most cassava miRNAs have been predicted using bioinformatics alone or through sequencing of plants challenged by biotic stress. Here, we use high-throughput sequencing and different bioinformatics methods to identify potential cassava miRNAs expressed in different tissues subject to heat and drought conditions. We identified 60 miRNAs conserved in other plant species and 821 potential cassava-specific miRNAs. We also predicted 134 and 1002 potential target genes for these two sets of sequences. Using real time PCR, we verified the condition-specific expression of 5 cassava small RNAs relative to a non-stress control. We also found, using publicly available expression data, a significantly lower expression of the predicted target genes of conserved and nonconserved miRNAs under drought stress compared to other cassava genes. Gene Ontology enrichment analysis along with condition specific expression of predicted miRNA targets, allowed us to identify several interesting miRNAs which may play a role in stress-induced posttranscriptional regulation in cassava and other plants.


Author(s):  
Roldan M. de Guia ◽  
Adam J. Rose ◽  
Stephan Herzig

AbstractGlucocorticoids (GC) and their cognate intracellular receptor, the glucocorticoid receptor (GR), have been characterised as critical checkpoints in the endocrine control of energy homeostasis in mammals. Indeed, aberrant GC action has been linked to a variety of severe metabolic diseases, including obesity, insulin resistance and type 2 diabetes. As a steroid-binding member of the nuclear receptor superfamily of transcription factors, the GR translocates into the cell nucleus upon GC binding where it serves as a transcriptional regulator of distinct GC-responsive target genes that are – in many cases – associated with glucose and lipid regulatory pathways and thereby intricately control both physiological and pathophysiological systemic energy homeostasis. Here, we summarize the current knowledge of GC/GR function in energy metabolism and systemic metabolic dysfunction, particularly focusing on glucose and lipid metabolism.


Author(s):  
A. Taqaddas

Viral infections have always been of major concern in communities, health care settings and medical fields including radiotherapy and Radiology. Recently corona virus infection has attained global attention in the wake of covid-19 outbreak and consequently highlighted importance of viral prevention, diagnostic and therapeutic strategies to control and treat viral disease. In view of the recent events, the author reviewed the current and past literature to discuss contagious versus infectious viral transmission, as well as simple and effective ways of preventing the spread of viral diseases in community and health care setting so that this information can be used for preventing viral transmission at all levels. The article is written for a wide variety of audiences i.e. scientific and medical communities policy makers and general public.


2018 ◽  
Vol 159 (7) ◽  
pp. 252-259 ◽  
Author(s):  
Kinga Németh ◽  
Ottó Darvasi ◽  
Nikolette Szücs ◽  
Sándor Czirják ◽  
Henriett Butz

Abstract: MicroRNAs (miRNAs) are short, single stranded RNA molecules which play regulatory roles through posttranscriptional regulation of their target genes. Based on our current knowledge, more than 30% of the human protein-coding genes are regulated by miRNAs, hence influencing basic cellular mechanisms including cell proliferation, differentiation and cell death. Differential miRNA expression pattern has been detected in many different types of tumors and, recently, several publications have referred to miRNAs as potential therapeutic targets. Through adjustment of miRNA levels by artificial miRNAs administration or miRNA inhibition, we can influence not only one target gene but also complex biological pathways. Pituitary adenoma is the second most frequent intracranial tumor. In spite of this, the molecular mechanism of the pituitary adenoma formation is not yet entirely revealed. Recently, more and more evidences have been found suggesting that miRNAs have an important role in pituitary adenoma pathogenesis. Here, we summarize the recent results related to this role and highlight the therapeutic potentials in pituitary adenomas. Orv Hetil. 2018; 159(7): 252–259.


Author(s):  
Ryou-u Takahashi ◽  
Marta Prieto-Vila ◽  
Ai Hironaka ◽  
Takahiro Ochiya

AbstractmicroRNAs (miRNAs) constitute a large family of small, approximately 20–22 nucleotide non-coding RNAs that regulate the expression of target genes, mainly at the post-transcriptional level. Multiple studies report that miRNAs are involved in homeostatic maintenance and that aberrant expression of miRNAs is often observed in various types of diseases, including cancer. In cancer biology, miRNAs exert functional roles in tumor initiation, drug resistance, and metastasis. miRNAs are also secreted through small vesicles called exosomes, which are endosome-derived vesicles derived from various cell types including immune and tumor cells. In addition to cellular miRNAs (ce-miRNAs), secreted miRNAs (se-miRNAs) play important roles in cancer development and metastasis. Therefore, se-miRNAs in body fluids have been investigated as a promising biomarkers and therapeutic targets for cancer treatment. In this review, we summarize the current knowledge of miRNA functions in cancer development and discuss the potential clinical applications of se-miRNAs, e.g. as diagnostic markers and therapeutic targets.


Author(s):  
William B. McCombs ◽  
Cameron E. McCoy

Recent years have brought a reversal in the attitude of the medical profession toward the diagnosis of viral infections. Identification of bacterial pathogens was formerly thought to be faster than identification of viral pathogens. Viral identification was dismissed as being of academic interest or for confirming the presence of an epidemic, because the patient would recover or die before this could be accomplished. In the past 10 years, the goal of virologists has been to present the clinician with a viral identification in a matter of hours. This fast diagnosis has the potential for shortening the patient's hospital stay and preventing the administering of toxic and/or expensive antibiotics of no benefit to the patient.


Author(s):  
Caili Li ◽  
Meizhen Wang ◽  
Xiaoxiao Qiu ◽  
Hong Zhou ◽  
Shanfa Lu

Background: Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), small interfering RNAs (siRNAs) and long noncoding RNAs (lncRNAs), play significant regulatory roles in plant development and secondary metabolism and are involved in plant response to biotic and abiotic stresses. They have been intensively studied in model systems and crops for approximately two decades and massive amount of information have been obtained. However, for medicinal plants, ncRNAs, particularly their regulatory roles in bioactive compound biosynthesis, are just emerging as a hot research field. Objective: This review aims to summarize current knowledge on herbal ncRNAs and their regulatory roles in bioactive compound production. Results and Conclusion: So far, scientists have identified thousands of miRNA candidates from over 50 medicinal plant species and 11794 lncRNAs from Salvia miltiorrhiza, Panax ginseng, and Digitalis purpurea. Among them, more than 30 miRNAs and five lncRNAs have been predicted to regulate bioactive compound production. The regulation may achieve through various regulatory modules and pathways, such as the miR397-LAC module, the miR12112-PPO module, the miR156-SPL module, the miR828-MYB module, the miR858-MYB module, and other siRNA and lncRNA regulatory pathways. Further functional analysis of herbal ncRNAs will provide useful information for quality and quantity improvement of medicinal plants.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Isabell Kaczmarek ◽  
Tomáš Suchý ◽  
Simone Prömel ◽  
Torsten Schöneberg ◽  
Ines Liebscher ◽  
...  

Abstract G protein-coupled receptors (GPCRs) modulate a variety of physiological functions and have been proven to be outstanding drug targets. However, approximately one-third of all non-olfactory GPCRs are still orphans in respect to their signal transduction and physiological functions. Receptors of the class of Adhesion GPCRs (aGPCRs) are among these orphan receptors. They are characterized by unique features in their structure and tissue-specific expression, which yields them interesting candidates for deorphanization and testing as potential therapeutic targets. Capable of G-protein coupling and non-G protein-mediated function, aGPCRs may extend our repertoire of influencing physiological function. Besides their described significance in the immune and central nervous systems, growing evidence indicates a high importance of these receptors in metabolic tissue. RNAseq analyses revealed high expression of several aGPCRs in pancreatic islets, adipose tissue, liver, and intestine but also in neurons governing food intake. In this review, we focus on aGPCRs and their function in regulating metabolic pathways. Based on current knowledge, this receptor class represents high potential for future pharmacological approaches addressing obesity and other metabolic diseases.


2021 ◽  
Vol 48 (3) ◽  
pp. 2775-2789
Author(s):  
Ludwig Stenz

AbstractThe 300 bp dimeric repeats digestible by AluI were discovered in 1979. Since then, Alu were involved in the most fundamental epigenetic mechanisms, namely reprogramming, pluripotency, imprinting and mosaicism. These Alu encode a family of retrotransposons transcribed by the RNA Pol III machinery, notably when the cytosines that constitute their sequences are de-methylated. Then, Alu hijack the functions of ORF2 encoded by another transposons named L1 during reverse transcription and integration into new sites. That mechanism functions as a complex genetic parasite able to copy-paste Alu sequences. Doing that, Alu have modified even the size of the human genome, as well as of other primate genomes, during 65 million years of co-evolution. Actually, one germline retro-transposition still occurs each 20 births. Thus, Alu continue to modify our human genome nowadays and were implicated in de novo mutation causing diseases including deletions, duplications and rearrangements. Most recently, retrotransposons were found to trigger neuronal diversity by inducing mosaicism in the brain. Finally, boosted during viral infections, Alu clearly interact with the innate immune system. The purpose of that review is to give a condensed overview of all these major findings that concern the fascinating physiology of Alu from their discovery up to the current knowledge.


2021 ◽  
Vol 13 (3) ◽  
pp. 363-382
Author(s):  
Mario Dioguardi ◽  
Angela Pia Cazzolla ◽  
Claudia Arena ◽  
Diego Sovereto ◽  
Giorgia Apollonia Caloro ◽  
...  

COVID-19 (Coronavirus Disease 2019) is an emerging viral disease caused by the coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), which leads to severe respiratory infections in humans. The first reports came in December 2019 from the city of Wuhan in the province of Hubei in China. It was immediately clear that children developed a milder disease than adults. The reasons for the milder course of the disease were attributed to several factors: innate immunity, difference in ACE2 (angiotensin-converting enzyme II) receptor expression, and previous infections with other common coronaviruses (CovH). This literature review aims to summarize aspects of innate immunity by focusing on the role of ACE2 expression and viral infections in children in modulating the antibody response to SARS-CoV-2 infection. This review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Articles deemed potentially eligible were considered, including those dealing with COVID-19 in children and providing more up-to-date and significant data in terms of epidemiology, prognosis, course, and symptoms, focusing on the etiopathogenesis of SARS-CoV-2 disease in children. The bibliographic search was conducted using the search engines PubMed and Scopus. The following search terms were entered in PubMed and Scopus: COVID-19 AND ACE2 AND Children; COVID-19 AND Immunity innate AND children. The search identified 857 records, and 18 studies were applicable based on inclusion and exclusion criteria that addressed the issues of COVID-19 concerning the role of ACE2 expression in children. The scientific literature agrees that children develop milder COVID-19 disease than adults. Milder symptomatology could be attributed to innate immunity or previous CovH virus infections, while it is not yet fully understood how the differential expression of ACE2 in children could contribute to milder disease.


Sign in / Sign up

Export Citation Format

Share Document