Role of peroxisome proliferator activator receptor-gamma (PPAR-γ) in lung sepsis

2014 ◽  
Vol 2 (4) ◽  
pp. 228-246
Author(s):  
Dan G. Wang ◽  
Nasser Ghaly Yousif

PPAR-gamma has been implicated in the pathology of numerous diseases including; obesity, diabetes, atherosclerosis, and cancer. PPAR-gamma agonists have been used in the treatment of hyperlipidaemia and hyperglycemia. Two isoforms of PPARG are detected in the human and in the mouse: PPAR-γ1 (found in nearly all tissues except muscle) and PPAR-γ2 (mostly found in adipose tissue and the intestine). In the present study, to directly determine the role of PPARγ in lung sepsis we used PPARγ-knockout and C57/BL6 mice model. Mice are treated with Lipopolysaccharide LPS (0.5 mg/kg, iv) for 6-hours, the plasma and tissue cytokines TNF-α, IL-1β, IL-6, IL-10, MIP-1 and KC are analyzed by ELISA. The infiltrations of the mononuclear cells in the lung tissue and degree of lung tissue injury are examined using immunofluorescent and histopathology staining respectively. In PPARγ-knockout mice, LPS induced more expression of pro-inflammatory cytokines expression, which was associated with a marked monocyte infiltration, tissue injury and elevated lung activity of myeloperoxidase compared with wild type C57/BL6 mice. Present study, suggests that PPARγ has a critical role in attenuate lung sepsis and further study need to elucidate the clinical value.

2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S4-S4
Author(s):  
Belal Chami ◽  
Gulfam Ahmad ◽  
Angie Schroder ◽  
Patrick San Gabriel ◽  
Paul Witting

Abstract Neutrophils are short-lived immune cells that represent the major cell type recruited to the inflamed bowel releasing their azurophilic granules containing enzymes myeloperoxidase (MPO). Fecal and serum MPO levels has previously been shown to correlate to disease severity in IBD patients. MPO, in the presence of H2O2 and free Cl- undergoes a halogenation cycle, yielding the two-electron oxidant, hypochlorous acid (HOCl) - a potent bactericidal agent. However, chronic intestinal exposure to MPO/HOCl due to perpetual inflammation may cause secondary host-tissue injury and cell death. Neutrophil Extracellular Trap (NET)osis is a specialised form of neutrophil death where MPO is entrapped in a DNA scaffold and continues to elicit HOCl activity and may further contribute to host-tissue injury. We investigated the presence of NETs in surgically excised ileum samples from CD and healthy patients using advanced confocal microscopic techniques and found MPO, Neutrophil Elastase (NE) and Citrullinated Histone h3 (CitH3) - critical components of NET formation, individually positively correlate to the severity of histopathological intestinal injury. Furthermore, multiplex Opal™ IHC performed using LMS880 Airyscan-moduled microscopy with z-stacking revealed colocalization of NE, MPO, CitH3 and DAPI indicating the extensive presence of NETs in severely affected CD tissue. Using two pharmacological inhibitors of MPO in a dextran sodium sulphate (DSS) model of murine colitis, we demonstrated the pathological role of MPO in experimental colitis. MPO inhibitors, TEMPOL and AZD3241 delivered via daily i.p significantly rescued the course of colitis by abrogating clinical indices including body weight loss, disease activity index, inhibiting serum peroxidation, and preserving colon length, while significantly mitigating histoarchitectural damage associated with DSS-induced colitis. We also showed that MPO inhibition decreased neutrophil migration to the gut, suggesting MPO may play a role in perpetuating the inflammatory cell by further recruiting cells to the inflamed gut. Collectively, we have shown for the first time that MPO is not only an important clinical marker of disease severity but may also play a critical role in perpetuating host-tissue damage and inflammation.


2021 ◽  
Vol 22 (16) ◽  
pp. 8876
Author(s):  
Pierre Layrolle ◽  
Pierre Payoux ◽  
Stéphane Chavanas

Peroxisome Proliferator-Activated Receptor gamma (PPARγ) is a master regulator of metabolism, adipogenesis, inflammation and cell cycle, and it has been extensively studied in the brain in relation to inflammation or neurodegeneration. Little is known however about its role in viral infections of the brain parenchyma, although they represent the most frequent cause of encephalitis and are a major threat for the developing brain. Specific to viral infections is the ability to subvert signaling pathways of the host cell to ensure virus replication and spreading, as deleterious as the consequences may be for the host. In this respect, the pleiotropic role of PPARγ makes it a critical target of infection. This review aims to provide an update on the role of PPARγ in viral infections of the brain. Recent studies have highlighted the involvement of PPARγ in brain or neural cells infected by immunodeficiency virus 1, Zika virus, or human cytomegalovirus. They have provided a better understanding on PPARγ functions in the infected brain, and revealed that it can be a double-edged sword with respect to inflammation, viral replication, or neuronogenesis. They unraveled new roles of PPARγ in health and disease and could possibly help designing new therapeutic strategies.


PPAR Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Jingjing Li ◽  
Chuanyong Guo ◽  
Jianye Wu

15-Deoxy-∆-12,14-prostaglandin J2 (15d-PGJ2), a natural peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, has been explored in some detail over the last 20 years. By triggering the PPAR-γ signalling pathway, it plays many roles and exerts antitumour, anti-inflammatory, antioxidation, antifibrosis, and antiangiogenesis effects. Although many synthetic PPAR-γ receptor agonists have been developed, as an endogenous product of PPAR-γ receptors, 15d-PGJ2 has beneficial characteristics including rapid expression and the ability to contribute to a natural defence mechanism. In this review, we discuss the latest advances in our knowledge of the biological role of 15d-PGJ2 mediated through PPAR-γ. It is important to understand its structure, synthesis, and functional mechanisms to develop preventive agents and limit the progression of associated diseases.


2018 ◽  
Vol 37 (11) ◽  
pp. 1187-1198 ◽  
Author(s):  
A Tabassum ◽  
T Mahboob

The present study focused on the role of peroxisome proliferator–activated receptor-gamma (PPAR-γ) activation on renal oxidative damages, serum visfatin, and advanced glycation end products (AGEs) in high-fat diet (HFD)-induced type 2 diabetes mellitus. Following the institutional animal ethics committee guidelines, Wistar rats were categorized into five groups: group 1: fed on a normal rat diet; group 2: HFD-induced obese rats (HFD for 8 weeks); group 3: HFD-fed rats treated with rosiglitazone (RSG; 3 mg/kg orally for 7 days); group 4: T2DM rats induced by HFD and low dose of streptozotocin (i.p. 35 mg/kg); group 5: T2DM rats treated with RSG (3 mg/kg orally for 7 days). Serum levels of AGEs and visfatin, renal damage, and oxidative stress were analyzed. Results showed that HFD-induced obesity and T2DM caused an elevated blood glucose, serum AGEs, visfatin, insulin, urea, creatinine, and tissue malondialdehyde, whereas a decreased catalase and superoxide dismutase activity were observed. The PPAR-γ activation via agonist restored these changes. Our findings suggest that AGEs and visfatin possess an important role in the progression of renal oxidative stress, which can be reduced by the PPAR-γ agonist that impede deleterious effects of HFD and HFD-induced T2DM on renal damage.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4493-4493 ◽  
Author(s):  
Yoshihiro Hatta ◽  
Minoru Saiki ◽  
Yuko Enomoto ◽  
Shin Aizawa ◽  
Umihiko Sawada ◽  
...  

Abstract Troglitazone and pioglitazone are one of thiazolidinediones that are high affinity ligand for the nuclear receptor called peroxisome proliferator-activated receptor gamma (PPAR-γ). Troglitazone is a potent inhibitor of clonogenic growth of acute myeloid leukemia cells when combined with a retinoid. However, the effect of pioglitazone to neoplastic cells and normal hematopoietic cells has not been studied yet. Adult T-cell leukemia (ATL), prevalent in western Japan, is a highly aggressive malignancy of mature T lymphocyte. Therefore, we studied antitumor effect of pioglitazone against leukemic cells including ATL as well as normal hematopoietic cells. With 300 μM of pioglitazone, colony formation of ATL cell lines (MT1, MT2, F6T, OKM3T, and Su9T01) was completely inhibited. Colony formation of HUT102, another ATL cell line, was 12 % compared to untreated control. Clonogenic cells of other leukemic cell lines (K562, HL60, U937, HEL, CEM, and NALM1) was also inhibited to 0–30% of control. Colony formation of primary leukemic cells from 5 AML patients was decreased to 15 %. However, normal hematopoietic cells were weakly inhibited with 300 μM pioglitazone; 77 % of CFU-GM, 70 % of CFU-E, and 33 % of BFU-E survived. Cell cycle analysis showed that pioglitazone decreased the ratio of G2/M phase in HL60 cells, suggesting the inhibition of cell division. By Western blotting, PPAR-γ protein level was similar in all leukemic cells and normal bone marrow mononuclear cells. Taken together, pioglitazone effectively eliminate leukemic cells and could be used as an antitumor agent in vivo.


2010 ◽  
Vol 298 (2) ◽  
pp. F381-F390 ◽  
Author(s):  
Ilaria Miceli ◽  
Davina Burt ◽  
Elena Tarabra ◽  
Giovanni Camussi ◽  
Paolo Cavallo Perin ◽  
...  

Increased glomerular permeability to proteins is a characteristic feature of diabetic nephropathy (DN). The slit diaphragm is the major restriction site to protein filtration, and the loss of nephrin, a key component of the slit diaphragm, has been demonstrated in both human and experimental DN. Both systemic and glomerular hypertension are believed to be important in the pathogenesis of DN. Human immortalized podocytes were subjected to repeated stretch-relaxation cycles by mechanical deformation with the use of a stress unit (10% elongation, 60 cycles/min) in the presence or absence of candesartan (1 μM), PD-123319 (1 μM), and rosiglitazone (0.1 μM). Nephrin mRNA and protein expression were assessed using quantitative real-time PCR, immunoblotting, and immunofluorescence, and the protein expression of AT1 receptor and angiotensin II secretion were evaluated. Exposure to stretch induced a significant ∼50% decrease in both nephrin mRNA and protein expression. This effect was mediated by an angiotensin II-AT1 mechanism. Indeed, podocyte stretching induced both angiotensin II secretion and AT1 receptor overexpression, podocyte exposure to angiotensin II reduced nephrin protein expression, and both the AT-1 receptor antagonist candesartan and a specific anti-angiotensin II antibody completely abolished stretch-induced nephrin downregulation. Similar to candesartan, the peroxisome proliferator-activated receptor (PPAR)-γ agonist, rosiglitazone, also inhibited stretch-induced nephrin downregulation, suggesting interference with stretch-induced activation of the angiotensin II-AT1 receptor system. Accordingly, rosiglitazone did not alter stretch-induced angiotensin II secretion, but it prevented AT1 upregulation in response to stretch. These results suggest a role for hemodynamic stress in loss of nephrin expression and allude to a role of PPAR-γ agonists in the prevention of this loss.


2017 ◽  
Vol 95 (6) ◽  
pp. 641-646 ◽  
Author(s):  
Ola Ahmed El-Gohary ◽  
Mona Maher Allam

Infarct-like lesion induced by isoprenaline is a well-known model to study myocardial infarction (MI). Vitamin D has been shown to have anti-inflammatory and antioxidant effects. Recent studies highlighted cross talk between vitamin D and peroxisome proliferator-activated receptor gamma (PPAR-γ). The present study was designed to investigate the effect of pretreatment with vitamin D on the isoprenaline-induced infarct-like lesion in rats and the role of PPAR-γ as a novel mechanism in vitamin-D-mediated cardioprotective effect. Markers chosen to assess cardiac damage included serum level of creatine kinase (CK), lactate dehydrogenase (LDH), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6). Cardiac contents of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH) were also assessed. Furthermore, ECG monitoring and measurement of injury extension were carried out. Isoprenaline increased the level of cardiac enzymes, as well as inflammatory and oxidative stress biomarkers. In addition, it produced ST-segment elevation. Pretreatment with vitamin D significantly improved previous parameters. The prior treatment with bisphenol A diglycidyl ether (BADGE), a PPAR-γ antagonist, significantly attenuated the protective effect of vitamin D. In conclusion, vitamin D can be demonstrated as a promising cardioprotective agent in MI and PPAR-γ significantly contributes toward vitamin-D-mediated protection.


2017 ◽  
Vol 313 (3) ◽  
pp. H584-H596 ◽  
Author(s):  
Junco Shibayama Warren ◽  
Shin-ichi Oka ◽  
Daniela Zablocki ◽  
Junichi Sadoshima

Studies using omics-based approaches have advanced our knowledge of metabolic remodeling in cardiac hypertrophy and failure. Metabolomic analysis of the failing heart has revealed global changes in mitochondrial substrate metabolism. Peroxisome proliferator-activated receptor-α (PPARα) plays a critical role in synergistic regulation of cardiac metabolism through transcriptional control. Metabolic reprogramming via PPARα signaling in heart failure ultimately propagates into myocardial energetics. However, emerging evidence suggests that the expression level of PPARα per se does not always explain the energetic state in the heart. The transcriptional activities of PPARα are dynamic, yet highly coordinated. An additional level of complexity in the PPARα regulatory mechanism arises from its ability to interact with various partners, which ultimately determines the metabolic phenotype of the diseased heart. This review summarizes our current knowledge of the PPARα regulatory mechanisms in cardiac metabolism and the possible role of PPARα in epigenetic modifications in the diseased heart. In addition, we discuss how metabolomics can contribute to a better understanding of the role of PPARα in the progression of cardiac hypertrophy and failure.


2009 ◽  
Vol 2 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Alexandra A. Herzlich ◽  
Xiaoyan Ding ◽  
Defen Shen ◽  
Robert J. Ross ◽  
Jingsheng Tuo ◽  
...  

Peroxisome proliferator-activated receptors (PPARs) play a role in oxidative stress and VEGF regulation, which are closely related to age-related macular degeneration (AMD). PPAR γ expression and its downstream molecules were examined in fat-1 mice (transgenic mice that convert n-6 to n-3 fatty acids), Ccl2-/-/Cx3cr1-/- mice (an AMD model), ARPE19 cells (a human retinal pigment epithelial cell line, RPE, a cell type with a critical role in AMD), and human eyes with and without AMD. PPAR α, β, and γ, VEGF and receptors were determined by immunohistochemistry in the mice models, humans, and ARPE19 cells. Transcripts of PPARs, VEGF, MMP-9 and HO-1 were determined by RQ-PCR. PPARs were constitutively expressed in normal neuroretina and RPE of humans and mice. PPAR γ expression was increased in fat-1 and Ccl2-/-/Cx3cr1-/- mice. VEGF was decreased in fat-1 mice but increased in Ccl2-/-/Cx3cr1-/- mice. VEGF receptors were stable. VEGF, MMP9 and HO-1 transcript levels were increased in ARPE19 cells under H2O2 - induced oxidative stress. Human AMD retinas exhibited higher PPAR γ. The findings of increased expression of PPAR γ and its downstream proteins (VEGF, MMP9, and HO-1) in H2O2-treated ARPE19 cells, Ccl2-/-/Cx3cr1-/- mice, and human AMD eyes, but decreased VEGF in fat-1 mice, suggest that PPAR γ may play a role in AMD.


Sign in / Sign up

Export Citation Format

Share Document