scholarly journals Role of Oxygen Pressure on the Surface Properties of Polycrystalline Cu2O Films Deposited By Thermal Evaporator

2019 ◽  
Vol 1 (3) ◽  
pp. 14
Author(s):  
I. A. Khan ◽  
S. A. Hussain ◽  
A. S. Nadeem ◽  
M. Saleem ◽  
A. Hassnain ◽  
...  

<p>Polycrystalline cuprous oxide (P-Cu2O) films are deposited on Cu substrates for various (0.2, 0.3 and 0.4 mbar) oxygen pressures (OP) by thermal evaporator. The XRD pattern shows the development of Cu (200), Cu2O (200) and Cu2O (311) diffraction planes which confirms the deposition of P-Cu2O films. The intensity of Cu2O (200) and Cu2O (311) planes is associated with the increase of OP. The crystallite size and microstrains developed in (200) and (311) planes are found to be 19.31, 21.18, 11.32 nm; 22.04, 23.11, 12.08 nm and 0.113, 0.103, 0.193; 0.099, 0.096, 0.181 with increasing OP respectively. The d-spacing and lattice constant are found to be 0.210, 0.128 nm and 0.421, 0.425 nm respectively. The bond length of P-Cu2O film is found to be 0.255 nm. The crystallites/unit area of these planes is found to be 12.21, 7.46, 45.16 nm-2 and 8.21, 5.75, 37.16 nm-2 respectively. The texture coefficients of these planes are found to be 1.22, 1.26, 1.11 and 0.78, 0.74 and 0.56 with increasing OP respectively. The O and Cu contents are found to be 5.31, 5.92, 6.94 wt % and 83.01, 82.44, 80.65 wt % respectively. The thickness and growth rate of P-Cu2O films are found to be 87.9, 71.9, 65.5 nm and 17.6, 14.2, 13.1 (nm/min) with increasing OP respectively. The SEM micro-structures reveal the formations of patches of irregular shapes, rounded nano-particles, clouds of nano-particles and their distribution depend on the increasing OP. The refractive index and energy band gap of P-Cu2O films are found to be 1.96, 1.89, 1.92 and 2.47, 2.44 and 2.25 eV with increasing OP respectively.<br /><br /></p>

2019 ◽  
Vol 15 (3) ◽  
pp. 198-206 ◽  
Author(s):  
Sarfaraz Ahmed Mahesar ◽  
Saeed Ahmed Lakho ◽  
Syed Tufail Hussain Sherazi ◽  
Hamid Ali Kazi ◽  
Kamran Ahmed Abro ◽  
...  

Background: Captopril is the synthetic dipeptide used as an angiotensin converting enzyme inhibitor. Captopril is used to treat hypertension as well as for the treatment of moderate heart failure. Analytical instrumentation and methodology plays an important role in pharmaceutical analysis. Methods: This review presents some important applications of electrochemical modes used for the analysis of captopril. So far captopril has been analyzed by using different bare and modified working electrodes with a variety of modifiers from organic and inorganic materials to various types of nano particles/materials. Results: This paper presents some of the methods which have been published in the last few years i.e. from 2003 to 2016. This review highlights the role of the analytical instrumentation, particularly electrochemical methods in assessing captopril using various working electrodes. Conclusion: A large number of studies on voltammetry noted by means of various bare and modified electrodes. Among all of the published voltammetric methods, DPV, SWV, CV and miscellaneous modes were trendy techniques used to analyze captopril in pharmaceutical formulations as well as biological samples. Electrodes modified with nanomaterials are promising sensing tools as this showed high sensitivity, good accuracy with precision as well as selectivity. In comparison to chromatographic methods, the main advantages of electrochemical methods are its cheaper instrumentation, lower detection limit and minimal or no sample preparation.


Author(s):  
Xiao-Hui Chen ◽  
Lei Liu ◽  
Jinbo Li ◽  
Fayun Zhang

Abstract Al7075–Ti–Y natural composites were prepared by using a combination of ultrasonic vibration and casting. The effects of titanium (Ti) and yttrium (Y) on the nucleation of primary α-Al were studied and the influencing mechanism of Y on the TiAl3 formation was analysed. Furthermore, a reaction kinetics model of TiAl3 under ultrasonic vibration was established. The results showed that the uniformly distributed TiAl3 and Al3Y nano-particles resulted in grain refinement. Y changed the morphology of TiAl3 and the appearance of corrosion pits was related to the fact that Y was dissolved within the TiAl3 structure to form Ti(Al,Y)3. The established model revealed that ultrasonic vibration significantly promoted the formation of TiAl3, and that ultrasonic time was the main factor affecting its growth.


2001 ◽  
Vol 703 ◽  
Author(s):  
K. Chattopadhyay ◽  
V. Bhattacharya ◽  
A. P. Tsai

ABSTRACTNanodispersed lead in metallic and amorphous matrices was synthesized by rapid solidification processing. The optimum microstructure was tailored to avoid percolation of the particles. With these embedded particles it is possible to study quantitatively the effect of size on the superconducting transition temperature by carrying out quantitative microstructural characterization and magnetic measurements. Our results suggest the role of the matrices in enhancement or depression of superconducting transition temperature of lead. The origin of this difference in behavior with respect to different matrices and sizes is discussed.


2019 ◽  
Vol 130 ◽  
pp. 400-412 ◽  
Author(s):  
Jitendra Narayan Panda ◽  
Jayashree Bijwe ◽  
Raj K. Pandey

2017 ◽  
Vol 888 ◽  
pp. 458-461
Author(s):  
Hazman Seli ◽  
Nik Akmar Rejab ◽  
Zainal Arifin Ahmad

Coal is still one of the major energy sources. It is used as a reducing agent in the metallurgical industry, in the cement industry coal is a source of energy and it is still used in power generation. Mukah coal is characterized through chemical and mineralogical properties determinations. XRD pattern of the coal shows that it is amorphous in nature and dominated by quartz and kaolinite. Mukah coal has about total carbon 97.98 wt% with SiO2, Al2O3 and Fe2O3 present as the most predominant oxides. The oxides make up approximately 1.58 wt% of the coal samples. The SEM image shows basically depicts coal particles of various irregular shapes and sizes. The mineral matter was not clearly seen on the surface of the coal particle as it was supposedly embedded inside the bulk of carbonaceous matter.


2011 ◽  
Vol 337 ◽  
pp. 526-531 ◽  
Author(s):  
Chang Hua Du ◽  
Zhen Kang Li ◽  
Bin Liu ◽  
Chun Tian Li

By the method of adding MNP (micron or nano particles) into general solder, the composite electronic solder can be prepared, due to its role of solution or dispersion strengthening, and can improve the thermostable fatigue and creep properties of solder joint, it is also usually named as RCS (reinforced composite solder).Based on researchful analysis of RCS, such as metal particles, particles for high hardness, particles for low expansion coefficient, rare-earth particles and low aggregated particle, and of their reinforced mechanism, the technical requirements of RCS is found, it is also analyzed problems and application prospects of RCS.


2020 ◽  
Vol 990 ◽  
pp. 302-305
Author(s):  
Razif Nordin ◽  
Nadia Latiff ◽  
Rizana Yusof ◽  
Wan Izhan Nawawi ◽  
M.Z. Salihin ◽  
...  

Commercial grade ZnO were sieved into particle size of 38 to 90 μm at room temperature. X-ray diffraction (XRD) pattern confirms the hexagonal wurzite structure of ZnO microparticles. Irregular shapes of ZnO microparticles were observed by scanning electron microscope (SEM). Fourier transform infrared spectra (FTIR) confirmed the presence of Zn-O band. In addition, Uv-visible spectra (UV-Vis) were empolyed to estimate the band gap energy of ZnO microparticles.


2016 ◽  
Vol 18 (7) ◽  
pp. 5499-5508 ◽  
Author(s):  
Venkateshwar Rao Dugyala ◽  
Jyothi Sri Muthukuru ◽  
Ethayaraja Mani ◽  
Madivala G. Basavaraj

The dynamic surface tension measurements are used to elucidate the contribution of electrostatic interaction energy barriers for the adsorption of nano-particles to the interfaces.


2016 ◽  
Vol 30 (5) ◽  
pp. 1177-1186 ◽  
Author(s):  
Safia Anjum ◽  
Hafsa Saleem ◽  
Khalid Rasheed ◽  
Rehana Zia ◽  
Saira Riaz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document