scholarly journals The study of the Kinetic Characteristics of Sorption of Scandium of Ion Exchanger Purolite MTS9580 from Return Circulating Solutions of Underground Leaching of Uranium Ores

2020 ◽  
Vol 22 (2) ◽  
pp. 135
Author(s):  
U. Yessimkanova ◽  
M. Mataev ◽  
M. Alekhina ◽  
M. Kopbaeva ◽  
A. Berezovskiy ◽  
...  

This paper presents the results of a study of experiments on the sorption characteristics of phosphorus-containing ion exchangers Purolite MTS9580 (functional group ‒ derivatives of phosphonic acid) and Lewatit TP260 (functional group ‒ aminomethylphosphonic acid) on scandium. Using the method of low-temperature nitrogen adsorption, structural characteristics of selected ion exchangers Purolite MTS9580 and Lewatit TP260 respectively were measured. The specific surface of Purolite MTS9580 and Lewatit TP260 ion exchangers was measured as 5.1 and 4.5 m2/g, respectively. The obtained values indicate the presence of a macroporous structure in the ion exchangers. Experiments were carried out on the sorption of scandium and critical impurities in a static mode and dynamic mode while varying the acidity of the initial mother liquor of the sorption of uranium. Comparison of scandium sorption from pre-acidified uranium sorption mother liquor with Lewatit TP260 and Purolite MTS9580 ion exchangers showed an advantage for MTS9580 resin. The MTS9580 resin had an exchange capacity of 200 mg Sc/dm3 versus 59.7 mg Sc/dm3 for TP260. The dynamic exchange capacity of Purolite MTS9580 is much lower in relation to harmful impurities as Al, Fe, Ca, etc.

1994 ◽  
Vol 59 (6) ◽  
pp. 1311-1318 ◽  
Author(s):  
Ladislav Svoboda ◽  
Petr Vořechovský

The properties of cellulose chelating ion exchangers Ostsorb have been studied in the sorption of cadmium and lead from aqueous solutions. The Cd(II) and Pb(II) ions are trapped by the Ostsorb OXIN and Ostsorb DETA ion exchangers most effectively in neutral and alkaline media but at these conditions formation of stable hydrolytic products of both metals competes with the exchange equilibria. From this point of view, Ostsorb DTTA appears to be a more suitable sorbent since it traps the Pb(II) and Cd(II) ions in acidic media already. Chloride ions interfere with the sorption of the two metals by Ostsorb DTTA whereas the ionic strength adjusted by the addition of sodium perchlorate does not affect the exchange capacity of this ion exchanger.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4222
Author(s):  
Shushi Namba ◽  
Wataru Sato ◽  
Masaki Osumi ◽  
Koh Shimokawa

In the field of affective computing, achieving accurate automatic detection of facial movements is an important issue, and great progress has already been made. However, a systematic evaluation of systems that now have access to the dynamic facial database remains an unmet need. This study compared the performance of three systems (FaceReader, OpenFace, AFARtoolbox) that detect each facial movement corresponding to an action unit (AU) derived from the Facial Action Coding System. All machines could detect the presence of AUs from the dynamic facial database at a level above chance. Moreover, OpenFace and AFAR provided higher area under the receiver operating characteristic curve values compared to FaceReader. In addition, several confusion biases of facial components (e.g., AU12 and AU14) were observed to be related to each automated AU detection system and the static mode was superior to dynamic mode for analyzing the posed facial database. These findings demonstrate the features of prediction patterns for each system and provide guidance for research on facial expressions.


Author(s):  
Р.Р. Гималетдинов ◽  
М.Р. Усманов ◽  
С.Ф. Валеев ◽  
В.В. Бодров ◽  
К.Г. Паскару ◽  
...  

Представлены результаты исследований применения сорбента «SynergySorb® ПС-1000» на основе модифицированного гидролизного лигнина для очистки сточных вод крупных нефтеперерабатывающих предприятий. За счет развитой системы микро- и мезопор сорбент эффективно поглощает легкие фракции углеводородов, снижая общее содержание нефтепродуктов в сточной воде и интенсивность запаха вблизи открытых очистных сооружений. Полная динамическая обменная емкость сорбента по нефтепродуктам составила 0,605 г/г при фильтрации сточных вод одного из крупных российских нефтеперерабатывающих заводов. Средняя эффективность очистки до проскока нефтепродуктов составила 94%, интенсивность запаха воды в результате испытаний снижена с 5 до 2 баллов. Отработанный сорбент «SynergySorb® ПС-1000» относится к 4 классу опасности (малоопасный) по показателям токсичности и экотоксичности The results of studies of using SynergySorb® PS-1000 sorbent based on modified hydrolysis lignin for the purification of wastewater from large oil refineries are presented. Owing to the developed system of micro- and mesopores, the sorbent effectively absorbs light fractions of hydrocarbons, thus reducing the total content of oil products in wastewater and the intensity of odor near open treatment facilities. The total dynamic exchange capacity of the sorbent for oil products was 0.605 g/g while filtering wastewater from one of the largest Russian oil refineries. The average treatment efficiency before the breakthrough of oil products was 94%, the intensity of effluent odor as a result of tests was reduced from 5 to 2 points. Spent SynergySorb® PS-1000 sorbent belongs to the 4th hazard class (low hazard) in terms of toxicity and ecotoxicity.


In s.i.m.s. the sample surface is ion bombarded and the emitted secondary ions are mass analysed. When used in the static mode with very low primary ion beam current densities (10 -11 A/mm 2 ), the technique analyses the outermost atomic layers with the following advantages (Benninghoven 1973, I975): the structural—chemical nature of the surface may be deduced from the masses of the ejected ionized clusters of atoms; detection of hydrogen and its compounds is possible; sensitivity is extremely high (10 -6 monolayer) for a number of elements. Composition profiles are obtained by increasing the primary beam current density (dynamic mode) or by combining the technique in the static mode with ion beam machining with a separate, more powerful ion source. The application of static s.i.m.s. in metallurgy has been explored by analysing a variety of alloy surfaces after fabrication procedures in relation to surface quality and subsequent performance. In a copper—silver eutectic alloy braze it was found that the composition of the solid surface depended markedly on its pretreatment. Generally there was a surface enrichment of copper relative to silver in melting processes while sawing and polishing enriched the surface in silver


2018 ◽  
Vol 33 (2) ◽  
pp. 180-197 ◽  
Author(s):  
Khezrollah Khezri ◽  
Yousef Fazli

Pristine mesoporous diatomite was employed to prepare polystyrene/diatomite composites. Diatomite platelets were used for in situ polymerization of styrene by atom transfer radical polymerization to synthesize tailor-made polystyrene nanocomposites. X-Ray fluorescence spectrometer analysis and thermogravimetric analysis (TGA) were employed for evaluating some inherent properties of pristine diatomite platelets. Nitrogen adsorption/desorption isotherm is applied to examine surface area and structural characteristics of the diatomite platelets. Evaluation of pore size distribution and morphological studies were also performed by scanning and transmission electron microscopy. Conversion and molecular weight determinations were carried out using gas and size exclusion chromatography, respectively. Linear increase of ln ( M0/M) with time for all the samples shows that polymerization proceeds in a living manner. Addition of 3 wt% pristine mesoporous diatomite leads to an increase of conversion from 72% to 89%. Molecular weight of polystyrene chains increases from 11,326 g mol−1 to 14134 g mol−1 with the addition of 3 wt% pristine mesoporous diatomite; however, polydispersity index values increases from 1.13 to 1.38. Increasing thermal stability of the nanocomposites is demonstrated by TGA. Differential scanning calorimetry shows an increase in glass transition temperature from 81.9°C to 87.1°C by adding 3 wt% of mesoporous diatomite platelets.


2018 ◽  
Vol 156 ◽  
pp. 03046 ◽  
Author(s):  
Widyawanto Prastistho ◽  
Winarto Kurniawan ◽  
Hirofumi Hinode

The influences of mechanical milling on Indonesian Natural Bentonite (INB) characteristics and manganese (Mn) removal from acid mine drainage (AMD) were investigated. The INB characteristics were observed by scanning electron microscope (SEM), X-ray diffraction (XRD), nitrogen adsorption-desorption for specific surface area (SSA) and microporosity measurement, cation exchange capacity (CEC) and particle size distribution (PSD) analyzer. Four minutes milling with frequency 20 Hz on INB caused morphological change which showed more crumbled and destructed particle, lost the (001) peak but still retained the (100) peak that indicated delamination of montmorillonite mineral without breaking the tetrahedral-octahedral-tetrahedral (T-O-T) structure, rose the CEC from 28.49 meq/100g to 35.51 meq/100g, increase in the SSA from 60.63 m2/g to 104.88 m2/g, significant increase in microporosity which described in the t plots and decrease in the mean particle size distribution peak from 49.28 μm to 38.84 μm. The effect of contact time and effect of adsorbent dosage on Mn sorption was studied. Both unmilled and milled samples reached equilibrium at 24 hours and the pH rose from 4 to 7 in first 30 minutes. The Mn removal percentage increased significantly after milling. Using Langmuir isotherm, the maximum adsorbed metals (qmax) also increased from 0.570 to 4.219 mg/g.


2020 ◽  
Vol 4 (3) ◽  

Inorganic sorbents, in comparison with ordinary organic ion exchangers, have higher selectivity, radiation, thermal, and chemical stability. Inorganic ion exchangers are universal materials exhibiting both cation exchange and anion exchange properties. In this work, using aluminum hydroxide (AHO) as an example, we study the possibility of expanding the range of metal oxyhydrates that can serve as the basis to produce inorganic anion-exchange materials. The properties of aluminum hydroxide largely depend on the method of its production. This phenomenon is associated with a different state of Al3+ ions in aqueous solutions during hydrolysis. Estimation of the size of the primary particles of hydrated alumina gives a value of 19 nm. The most potent effect on the structure and ion-exchange properties of aluminum hydroxide is exerted by the introduction of alloying elements into its composition. Isomorphic substitution of a part of Al(III) ions in the structure of aluminum hydroxide with ions with a higher charge (Ti(IV), Zr(IV), or W(VI)) leads to an increase in the content of exchangeable OH-groups in the resulting material. The synthesized materials are amorphous substances, to study their structure; the method of diffuse X-ray scattering was used. The Gibbsite structural motif is determined, and structural changes occurring under the influence of various factors, and synthesis conditions are analyzed. By optimizing the composition of the material, it is possible to improve its sorption characteristics significantly. AAW-0, AAZ-0, and AAT-0 anion exchangers synthesized based on hydrated aluminum oxide can be used to purify weakly acidic electrolyte solutions from anionic impurities in the dynamic mode of repeated sorptiondesorption cycles. Materials based on mixed hydrated oxides of various elements can also be used as catalyst supports. Their anion exchange properties allow a wide range to vary the number of different anions introduced into the solid phase and, accordingly, to regulate the number and state of active catalytic sites.


Author(s):  
C. Julian Chen

This chapter discusses atomic force microscopy (AFM), focusing on the methods for atomic force detection. Although the force detection always requires a cantilever, there are two types of modes: the static mode and the dynamic mode. The general design and the typical method of manufacturing of the cantilevers are discussed. Two popular methods of static force detection are presented. The popular dynamic-force detection method, the tapping mode is described, especially the methods in liquids. The non-contact AFM, which has achieved atomic resolution in the weak attractive force regime, is discussed in detail. An elementary and transparent analysis of the principles, including the frequency shift, the second harmonics, and the average tunneling current, is presented. It requires only Newton’s equation and Fourier analysis, and the final results are analyzed over the entire range of vibrational amplitude. The implementation is briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document