scholarly journals The Effect Of Hydrazine Addition On The Formation Of Oxygen Molecule By Fast Neutron Radiolysis

KnE Energy ◽  
2016 ◽  
Vol 1 (1) ◽  
Author(s):  
G.R. Sunaryo

<p>Hypothetically speaking, hydrazine could suppress the oxygen formation as a major of corrosion initiator. In this work, we developed a calculation model to understand the effect of hydrazine addition toward the oxygen under PWR condition. Our great interest is to study whether this strategy would also be effectively applied in PWRs<a href="file:///C:/Users/Mohamad%20Mostafa/Desktop/Knowledge%20E/In%20Press%20Conferences/ICoNETS-2015/Source-Manuscripts/20_L05-Geni_p136-141.docx#_msocom_1">[P1]</a> . In the present work, the effect of hydrazine on suppressing the molecule oxygen under neutron irradiation is described.  The simulation was done by using FACSIMILE.  The variation dose applied assuming a batch system and at high dose ~10<sup>4</sup> Gy s<sup>-1</sup>.  Three different temperatures were applied, which are room temperature, 250 and 300 <sup>o</sup>C at two system oxygenated water, which are aeration and deaeration. At room temperature, for deaerated condition, added hydrazine under a range of 10<sup>-6</sup> – 10<sup>-4</sup> M into primary coolant were not effective to suppress  O<sub>2 </sub>form since the effect was similar as in the pure water system since for 10<sup>-3</sup> M hydrazine addition, a large produce of O<sub>2 </sub>were obtained. In reverse, for deaerated condition, hydrazine concentrate about 10<sup>-3</sup> M can suppress O<sub>2</sub> form significantly, while hydrazine add in the range between 10<sup>-6</sup> – 10<sup>-4</sup> M is again confirmed to be the same as in pure water system. For high temperature, at 250 and 300 <sup>o</sup>C, the results showed that in deaerated condition, hydrazine addition can suppress  O<sub>2  </sub>form<sub> </sub>proportionally to its concentration while in aerated condition, hydrazine add with concentration of 10<sup>-6</sup> and 10<sup>-5</sup> M were not effectively to suppress O<sub>2  </sub>form,<sub> </sub>a slightly decrease of O<sub>2</sub> occurred due to the addition of 10<sup>-4</sup> M hydrazine and 10<sup>-3</sup> M of hydrazine can suppress the formation of O<sub>2</sub> significantly. <a href="file:///C:/Users/Mohamad%20Mostafa/Desktop/Knowledge%20E/In%20Press%20Conferences/ICoNETS-2015/Source-Manuscripts/20_L05-Geni_p136-141.docx#_msocom_2">[P2]</a> </p><div><hr align="left" size="1" width="33%" /><div><div><p> <a href="file:///C:/Users/Mohamad%20Mostafa/Desktop/Knowledge%20E/In%20Press%20Conferences/ICoNETS-2015/Source-Manuscripts/20_L05-Geni_p136-141.docx#_msoanchor_1">[P1]</a>The added sentence</p><p> </p></div></div><div><div><p> <a href="file:///C:/Users/Mohamad%20Mostafa/Desktop/Knowledge%20E/In%20Press%20Conferences/ICoNETS-2015/Source-Manuscripts/20_L05-Geni_p136-141.docx#_msoanchor_2">[P2]</a>The revised sentence</p></div></div></div>

2017 ◽  
Vol 19 (1) ◽  
pp. 11
Author(s):  
Geni Rina Sunaryo

BORIC ACID RADIOLYSIS IN PRIMARY COOLANT WATER OF PWR AT TEMPERATURE OF 250oC. The existence of oxygen in the primary coolant system of PWR could lead to corrosion, hence it is very important to suppress the oxygen concentration in the system. Therefore, study of the effect of boric acid addition into the primary coolant water system of PWR to suppress oxygen concentration resulted from gamma-ray radiation is essential to be performed. The aim of this research is to understand reaction mechanism at temperature of 2500C and the effect of boric acid adding toward oxygen concentration in the PWR primary coolant water. Methodology used is simulation using Facsimile software. Input for the software namely radiolysis reaction mechanism for pure water, G value from radiolysis product, dose rate of 1 and 104 Gy/s, aeration and deaeration system, and specific reaction of boric acid with hydroxyl radical and hydrated electron at temperature 250C and 3000C. The output are in the form of irradiation time vs oxygen concentration time series. The results show that the oxygen production increase significantly with the irradiation time and reach the saturated concentration at 107s. Based on the plot of oxygen’s concentration at 107s vs boric acid, several results are as following: oxygen concentration significantly suppressed by boric acid addition and gives the exponential decreasement, the higher dose rate gives the higher concentration of oxygen, the aeration system gives no effect on suppressing oxygen concentration at boric acid addition up to 0.1M.


1977 ◽  
Vol 16 (01) ◽  
pp. 30-35 ◽  
Author(s):  
N. Agha ◽  
R. B. R. Persson

SummaryGelchromatography column scanning has been used to study the fractions of 99mTc-pertechnetate, 99mTcchelate and reduced hydrolyzed 99mTc in preparations of 99mTc-EDTA(Sn) and 99mTc-DTPA(Sn). The labelling yield of 99mTc-EDTA(Sn) chelate was as high as 90—95% when 100 μmol EDTA · H4 and 0.5 (Amol SnCl2 was incubated with 10 ml 99mTceluate for 30—60 min at room temperature. The study of the influence of the pH-value on the fraction of 99mTc-EDTA shows that pH 2.8—2.9 gave the best labelling yield. In a comparative study of the labelling kinetics of 99mTc-EDTA(Sn) and 99mTc- DTPA(Sn) at different temperatures (7, 22 and 37°C), no significant influence on the reduction step was found. The rate constant for complex formation, however, increased more rapidly with increased temperature for 99mTc-DTPA(Sn). At room temperature only a few minutes was required to achieve a high labelling yield with 99mTc-DTPA(Sn) whereas about 60 min was required for 99mTc-EDTA(Sn). Comparative biokinetic studies in rabbits showed that the maximum activity in kidneys is achieved after 12 min with 99mTc-EDTA(Sn) but already after 6 min with 99mTc-DTPA(Sn). The long-term disappearance of 99mTc-DTPA(Sn) from the kidneys is about five times faster than that for 99mTc-EDTA(Sn).


1992 ◽  
Vol 57 (5) ◽  
pp. 1134-1142 ◽  
Author(s):  
Bohuslav Rittich ◽  
Marta Pirochtová ◽  
Jiří Hřib ◽  
Kamila Jurtíková ◽  
Petr Doležal

The present paper deals with the relationship between biological activities of some aliphatic and aromatic acids and their physico-chemical parameters expressing the influence of hydrophobic factors. The test strain in the biotest of growth inhibition was the fungus Fusarium moniliforme CCMF-180 and Penicillium expansum CCMF-576. Significant relationship between antifungal activities of un-ionized form of aliphatic acids and their capacity factors (log k'0) extrapolated to pure water, partition coefficients determined in 1-octanol-water system (log Poct) and the first order of molecular connectivity indices (1χ) were calculated. The ionized form of aliphatic acids were antifungally active too. For benzoic acids significant relationships between antifungal activities and capacity factors of anionic form (log k'ia) were calculated.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 431
Author(s):  
Giorgio Turri ◽  
Scott Webster ◽  
Michael Bass ◽  
Alessandra Toncelli

Spectroscopic properties of neodymium-doped yttrium lithium fluoride were measured at different temperatures from 35 K to 350 K in specimens with 1 at% Nd3+ concentration. The absorption spectrum was measured at room temperature from 400 to 900 nm. The decay dynamics of the 4F3/2 multiplet was investigated by measuring the fluorescence lifetime as a function of the sample temperature, and the radiative decay time was derived by extrapolation to 0 K. The stimulated-emission cross-sections of the transitions from the 4F3/2 to the 4I9/2, 4I11/2, and 4I13/2 levels were obtained from the fluorescence spectrum measured at different temperatures, using the Aull–Jenssen technique. The results show consistency with most results previously published at room temperature, extending them over a broader range of temperatures. A semi-empirical formula for the magnitude of the stimulated-emission cross-section as a function of temperature in the 250 K to 350 K temperature range, is presented for the most intense transitions to the 4I11/2 and 4I13/2 levels.


2011 ◽  
Vol 78 (4) ◽  
pp. 385-390 ◽  
Author(s):  
Priscilla A Melville ◽  
Nilson R Benites ◽  
Monica Ruz-Peres ◽  
Eugenio Yokoya

The presence of yeasts in milk may cause physical and chemical changes limiting the durability and compromising the quality of the product. Moreover, milk and dairy products contaminated by yeasts may be a potential means of transmission of these microorganisms to man and animals causing several kinds of infections. This study aimed to determine whether different species of yeasts isolated from bovine raw milk had the ability to develop at 37°C and/or under refrigeration temperature. Proteinase and phospholipase activities resulting from these yeasts were also monitored at different temperatures. Five genera of yeasts (Aureobasidium sp., Candida spp., Geotrichum spp., Trichosporon spp. and Rhodotorula spp.) isolated from bovine raw milk samples were evaluated. All strains showed one or a combination of characteristics: growth at 37°C (99·09% of the strains), psychrotrophic behaviour (50·9%), proteinase production (16·81% of the strains at 37°C and 4·09% under refrigeration) and phospholipase production (36·36% of the isolates at 37°C and 10·9% under refrigeration), and all these factors may compromise the quality of the product. Proteinase production was similar for strains incubated at 37°C (16·81% of the isolates) and room temperature (17·27%) but there was less amount of phospholipase-producing strains at room temperature (15·45% of the isolates were positive) when compared with incubation at 37°C (36·36%). Enzymes production at 37°C by yeasts isolated from milk confirmed their pathogenic potential. The refrigeration temperature was found to be most efficient to inhibit enzymes production and consequently ensure better quality of milk. The viability of yeasts and the activity of their enzymes at different temperatures are worrying because this can compromise the quality of dairy products at all stages of production and/or storage, and represent a risk to the consumer.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 617
Author(s):  
Li-Fang Jia ◽  
Lian Zhang ◽  
Jin-Ping Xiao ◽  
Zhe Cheng ◽  
De-Feng Lin ◽  
...  

AlGaN/GaN E/D-mode GaN inverters are successfully fabricated on a 150-mm Si wafer. P-GaN gate technology is applied to be compatible with the commercial E-mode GaN power device technology platform and a systematic study of E/D-mode GaN inverters has been conducted with detail. The key electrical characters have been analyzed from room temperature (RT) to 200 °C. Small variations of the inverters are observed at different temperatures. The logic swing voltage of 2.91 V and 2.89 V are observed at RT and 200 °C at a supply voltage of 3 V. Correspondingly, low/high input noise margins of 0.78 V/1.67 V and 0.68 V/1.72 V are observed at RT and 200 °C. The inverters also demonstrate small rising edge time of the output signal. The results show great potential for GaN smart power integrated circuit (IC) application.


1983 ◽  
Vol 27 ◽  
Author(s):  
J.C. Soares ◽  
A.A. Melo ◽  
M.F. DA Silva ◽  
E.J. Alves ◽  
K. Freitag ◽  
...  

ABSTRACTLow and high dose hafnium imolanted beryllium samoles have been prepared at room temperature by ion implantation of beryllium commercial foils and single crystals. These samples have been studied before and after annealing with the time differential perturbed angular correlation method (TDPAC) and with Rutherford backscattering and channeling techniques. A new metastable system has been discovered in TDPAC-measurements in a low dose hafnium implanted beryllium foil annealed at 500°C. Channeling measurements show that the hafnium atoms after annealing, are in the regular tetrahedral sites but dislocated from the previous position occupied after implantation. The formation of this system is connected with the redistribution of oxygen in a thin layer under the surface. This effect does not take place precisely at the same temperature in foils and in single crystals.


2017 ◽  
Vol 7 (1) ◽  
pp. 171
Author(s):  
Hamid Reza Adeli Bhroz ◽  
Kazem Parivar ◽  
Iraj Amiri ◽  
Nasim Hayati Roodbari

Background and Aim: Thyroid is one of the endocrine glands, (T3 and T4) play a significant role in the development of prenatal brain and the following stages. The study aimed to evaluate the effect of hypothyroidism on the amount of expression of NT4, NT3, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in brain of one-day rat neonates with hypothyroidism.Materials and Methods: In total, 25 mature mice of Albino NMRI race were selected after mating, divided into three group, control, as well as low-dose and high-dose intervention groups. Samples of the control group received pure water during pregnancy, whereas subjects of the intervention group with low and high doses of the medication were administered with 20 mg and 100 mg methimazole powder (dissolved in 100 cc water), respectively. After child delivery, blood samples were obtained from mother mice to determine the level of T3 and T4 in blood serum. Following that, the brain of one-day mice were removed by surgery and assessed to determine the amount of expression of NT4, NT3, NGF and BDNF using the complete kit of RT-PCR.Results: Levels of T4 and T3 in the control group were 28 ug/dl and 1.59 ug/dl, respectively. In the low-dose intervention group, the amounts of the mentioned hormones were 8 ug/dl and 0.85 ug/dl, significantly, indicating a significant reduction in the expression of NT4, NT3, NGF and BDNF genes, compared to the control group. Moreover, T4 and T3 were 6 ug/dl and 0.79 ug/dl in the high-dose group, respectively, conveying a significant decrease in the expression of NT4, NT3, NGF and BDNF genes, compared to the control group (P<0.05).


1984 ◽  
Vol 33 (12) ◽  
pp. 689-693
Author(s):  
Takashi Honda ◽  
Eiji Kashimura ◽  
Akira Minato

1931 ◽  
Vol 4 (3) ◽  
pp. 426-436
Author(s):  
K. J. Soule

Abstract Further work is very desirable on the effect of different accelerators, antioxidants, and fluxes. It is possible that their study will throw more light on the mechanism of the swelling phenomena, and also help to explain the anomalous behavior of some of the fillers tested. It would also seem to be worth while to study the action of a few selected stocks in water, at several temperatures between room temperature and 100° C., to determine if the water absorption and swelling merely increase with rising temperatures, or whether there might be an actual change in behavior at different temperatures.


Sign in / Sign up

Export Citation Format

Share Document