scholarly journals Circadian Clock and The Cardiometabolic Risk

2010 ◽  
Vol 2 (2) ◽  
pp. 16
Author(s):  
Anna Meiliana ◽  
Andi Wijaya

BACKGROUND: Epidemiological data reveal parallel trends of decreasing sleep duration and increases in metabolic disorders such as obesity, diabetes and hypertension. There is growing evidence that these trends are mechanistically related.CONTENT: The circadian system orchestrates the temporal organization of many aspects of physiology, including metabolism, in synchrony with the 24 hours rotation of the Earth. The circadian system is a complex feedback network that involves interactions between the central nervous system and peripheral tissues. Circadian regulation is intimately linked to metabolic homeostasis and that dysregulation of circadian rhythms can contribute to disease. Conversely, metabolic signals also feed back into the circadian system, modulating circadian gene expression and behavior.SUMMARY: Both inter- and intraorgan desynchrony may be involved in the pathogenesis of cardiometabolic disease attributable to effects in brain and multiple metabolic tissues including heart, liver, fat, muscle, pancreas and gut. Efforts to dissect the molecular mediators that coordinate circadian, metabolic, and cardiovascular systems may ultimately lead to both improved therapeutics and preventive interventions.KEYWORDS: circadian rhythms, clock genes, nuclear receptor, sleep, obesity, cardiometabolic risk

2021 ◽  
Vol 22 (2) ◽  
pp. 676
Author(s):  
Andy W. C. Man ◽  
Huige Li ◽  
Ning Xia

Every organism has an intrinsic biological rhythm that orchestrates biological processes in adjusting to daily environmental changes. Circadian rhythms are maintained by networks of molecular clocks throughout the core and peripheral tissues, including immune cells, blood vessels, and perivascular adipose tissues. Recent findings have suggested strong correlations between the circadian clock and cardiovascular diseases. Desynchronization between the circadian rhythm and body metabolism contributes to the development of cardiovascular diseases including arteriosclerosis and thrombosis. Circadian rhythms are involved in controlling inflammatory processes and metabolisms, which can influence the pathology of arteriosclerosis and thrombosis. Circadian clock genes are critical in maintaining the robust relationship between diurnal variation and the cardiovascular system. The circadian machinery in the vascular system may be a novel therapeutic target for the prevention and treatment of cardiovascular diseases. The research on circadian rhythms in cardiovascular diseases is still progressing. In this review, we briefly summarize recent studies on circadian rhythms and cardiovascular homeostasis, focusing on the circadian control of inflammatory processes and metabolisms. Based on the recent findings, we discuss the potential target molecules for future therapeutic strategies against cardiovascular diseases by targeting the circadian clock.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4877 ◽  
Author(s):  
Azka Hassan ◽  
Jamil Ahmad ◽  
Hufsah Ashraf ◽  
Amjad Ali

Circadian rhythms maintain a 24 h oscillation pattern in metabolic, physiological and behavioral processes in all living organisms. Circadian rhythms are organized as biochemical networks located in hypothalamus and peripheral tissues. Rhythmicity in the expression of circadian clock genes plays a vital role in regulating the process of cell division and DNA damage control. The oncogenic protein, MYC and the tumor suppressor, p53 are directly influenced by the circadian clock. Jet lag and altered sleep/wake schedules prominently affect the expression of molecular clock genes. This study is focused on developing a Petri net model to analyze the impacts of long term jet lag on the circadian clock and its probable role in tumor progression. The results depict that jet lag disrupts the normal rhythmic behavior and expression of the circadian clock proteins. This disruption leads to persistent expression of MYC and suppressed expression of p53. Thus, it is inferred that jet lag altered circadian clock negatively affects the expressions of cell cycle regulatory genes and contribute in uncontrolled proliferation of tumor cells.


2021 ◽  
Vol 15 ◽  
Author(s):  
Daisuke Ono ◽  
Ken-ichi Honma ◽  
Sato Honma

In mammals, the central circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Individual SCN cells exhibit intrinsic oscillations, and their circadian period and robustness are different cell by cell in the absence of cellular coupling, indicating that cellular coupling is important for coherent circadian rhythms in the SCN. Several neuropeptides such as arginine vasopressin (AVP) and vasoactive intestinal polypeptide (VIP) are expressed in the SCN, where these neuropeptides function as synchronizers and are important for entrainment to environmental light and for determining the circadian period. These neuropeptides are also related to developmental changes of the circadian system of the SCN. Transcription factors are required for the formation of neuropeptide-related neuronal networks. Although VIP is critical for synchrony of circadian rhythms in the neonatal SCN, it is not required for synchrony in the embryonic SCN. During postnatal development, the clock genes cryptochrome (Cry)1 and Cry2 are involved in the maturation of cellular networks, and AVP is involved in SCN networks. This mini-review focuses on the functional roles of neuropeptides in the SCN based on recent findings in the literature.


2021 ◽  
Vol 22 (5) ◽  
pp. 2288
Author(s):  
Menekse Öztürk ◽  
Marc Ingenwerth ◽  
Martin Sager ◽  
Charlotte von Gall ◽  
Amira A. H. Ali

The circadian rhythms of body functions in mammals are controlled by the circadian system. The suprachiasmatic nucleus (SCN) in the hypothalamus orchestrates subordinate oscillators. Time information is conveyed from the retina to the SCN to coordinate an organism’s physiology and behavior with the light/dark cycle. At the cellular level, molecular clockwork composed of interlocked transcriptional/translational feedback loops of clock genes drives rhythmic gene expression. Mice with targeted deletion of the essential clock gene Bmal1 (Bmal1−/−) have an impaired light input pathway into the circadian system and show a loss of circadian rhythms. The red house (RH) is an animal welfare measure widely used for rodents as a hiding place. Red plastic provides light at a low irradiance and long wavelength—conditions which affect the circadian system. It is not known yet whether the RH affects rhythmic behavior in mice with a corrupted circadian system. Here, we analyzed whether the RH affects spontaneous locomotor activity in Bmal1−/− mice under standard laboratory light conditions. In addition, mPER1- and p-ERK-immunoreactions, as markers for rhythmic SCN neuronal activity, and day/night plasma corticosterone levels were evaluated. Our findings indicate that application of the RH to Bmal1−/− abolishes rhythmic locomotor behavior and dampens rhythmic SCN neuronal activity. However, RH had no effect on the day/night difference in corticosterone levels.


2020 ◽  
pp. 1-12 ◽  
Author(s):  
Jan Scott ◽  
Knut Langsrud ◽  
Ingunn Ro Goulding ◽  
Havard Kallestad

SUMMARY Light is the most important environmental influence (zeitgeber) on the synchronization of the circadian system in humans. Excess light exposure during the evening and night-time affects secretion of the hormone melatonin, which in turn modifies the temporal organization of circadian rhythms, including the sleep–wake cycle. As sleep disturbances are prominent in critically ill medical and psychiatric patients, researchers began to examine the impact of light exposure on clinical outcomes and length of hospitalization. In psychiatric inpatients, exposure to bright morning light or use of blue blocking glasses have proved useful interventions for mood disorders. Recently, knowledge about light and the circadian system has been applied to the design of inpatient facilities with dynamic lighting systems that change according to time of day. The installation of ‘circadian lighting’ alongside technologies for monitoring sleep–wake patterns could prove to be one of the most practical and beneficial innovations in inpatient psychiatric care for more than half a century.


2016 ◽  
Vol 75 (4) ◽  
pp. 440-450 ◽  
Author(s):  
Joshua J Gooley

The circadian system temporally coordinates daily rhythms in feeding behaviour and energy metabolism. The objective of the present paper is to review the mechanisms that underlie circadian regulation of lipid metabolic pathways. Circadian rhythms in behaviour and physiology are generated by master clock neurons in the suprachiasmatic nucleus (SCN). The SCN and its efferent targets in the hypothalamus integrate light and feeding signals to entrain behavioural rhythms as well as clock cells located in peripheral tissues, including the liver, adipose tissue and muscle. Circadian rhythms in gene expression are regulated at the cellular level by a molecular clock comprising a core set of clock genes/proteins. In peripheral tissues, hundreds of genes involved in lipid biosynthesis and fatty acid oxidation are rhythmically activated and repressed by clock proteins, hence providing a direct mechanism for circadian regulation of lipids. Disruption of clock gene function results in abnormal metabolic phenotypes and impaired lipid absorption, demonstrating that the circadian system is essential for normal energy metabolism. The composition and timing of meals influence diurnal regulation of metabolic pathways, with food intake during the usual rest phase associated with dysregulation of lipid metabolism. Recent studies using metabolomics and lipidomics platforms have shown that hundreds of lipid species are circadian-regulated in human plasma, including but not limited to fatty acids, TAG, glycerophospholipids, sterol lipids and sphingolipids. In future work, these lipid profiling approaches can be used to understand better the interaction between diet, mealtimes and circadian rhythms on lipid metabolism and risk for obesity and metabolic diseases.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Luciana A. Campos ◽  
Jose Cipolla-Neto ◽  
Fernanda G. Amaral ◽  
Lisete C. Michelini ◽  
Michael Bader ◽  
...  

Accumulating evidence indicates that various biological and neuroendocrine circadian rhythms may be disrupted in cardiovascular and metabolic disorders. These circadian alterations may contribute to the progression of disease. Our studies direct to an important role of angiotensin II and melatonin in the modulation of circadian rhythms. The brain renin-angiotensin system (RAS) may modulate melatonin synthesis, a hormone with well-established roles in regulating circadian rhythms. Angiotensin production in the central nervous system may not only influence hypertension but also appears to affect the circadian rhythm of blood pressure. Drugs acting on RAS have been proven effective in the treatment of cardiovascular and metabolic disorders including hypertension and diabetes mellitus (DM). On the other hand, since melatonin is capable of ameliorating metabolic abnormalities in DM and insulin resistance, the beneficial effects of RAS blockade could be improved through combined RAS blocker and melatonin therapy. Contemporary research is evidencing the existence of specific clock genes forming central and peripheral clocks governing circadian rhythms. Further research on the interaction between these two neurohormones and the clock genes governing circadian clocks may progress our understanding on the pathophysiology of disease with possible impact on chronotherapeutic strategies.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Maria Nathália de Carvalho Magalhães Moraes ◽  
Luciane Rogéria dos Santos ◽  
Nathana Mezzalira ◽  
Maristela Oliveira Poletini ◽  
Ana Maria de Lauro Castrucci

α-MSH and light exert a dispersing effect on pigment granules ofXenopus laevismelanophores; however, the intracellular signaling pathways are different. Melatonin, a hormone that functions as an internal signal of darkness for the organism, has opposite effects, aggregating the melanin granules. Because light functions as an important synchronizing signal for circadian rhythms, we further investigated the effects of both hormones on genes related to the circadian system, namely,Per1(one of the clock genes) and the melanopsins,Opn4xandOpn4m(photopigments).Per1showed temporal oscillations, regardless of the presence of melatonin orα-MSH, which slightly inhibited its expression. Melatonin effects on melanopsins depend on the time of application: if applied in the photophase it dramatically decreasedOpn4xandOpn4mexpressions, and abolished their temporal oscillations, opposite toα-MSH, which increased the melanopsins’ expressions. Our results demonstrate that unlike what has been reported for other peripheral clocks and cultured cells, medium changes or hormones do not play a major role in synchronizing theXenopusmelanophore population. This difference is probably due to the fact thatX. laevismelanophores possess functional photopigments (melanopsins) that enable these cells to primarily respond to light, which triggers melanin dispersion and modulates gene expression.


2018 ◽  
Vol 19 (7) ◽  
pp. 2147
Author(s):  
Leonor Mendoza-Vargas ◽  
Elizabeth Guarneros-Bañuelos ◽  
Armida Báez-Saldaña ◽  
Fabiola Galicia-Mendoza ◽  
Edgar Flores-Soto ◽  
...  

Melatonin (MEL) is an ancient molecule, broadly distributed in nature from unicellular to multicellular species. MEL is an indoleamine that acts on a wide variety of cellular targets regulating different physiological functions. This review is focused on the role played by this molecule in the regulation of the circadian rhythms in crayfish. In these species, information about internal and external time progression might be transmitted by the periodical release of MEL and other endocrine signals acting through the pacemaker. We describe documented and original evidence in support of this hypothesis that also suggests that the rhythmic release of MEL contributes to the reinforcement of the temporal organization of nocturnal or diurnal circadian oscillators. Finally, we discuss how MEL might coordinate functions that converge in the performance of complex behaviors, such as the agonistic responses to establish social dominance status in Procambarus clarkii and the burrowing behavior in the secondary digging crayfish P. acanthophorus.


2019 ◽  
Author(s):  
Enrique Arboleda ◽  
Martin Zurl ◽  
Kristin Tessmar-Raible

AbstractBackgroundThe marine bristle wormPlatynereis dumeriliiis a useful functional model system for the study of the circadian clock and its interplay with others, e.g. circalunar clocks. The focus has so far been on the worm’s head. However, behavioral and physiological cycles in other animals typically arise from the coordination of circadian clocks located in the brain and in peripheral tissues. Here we focus on peripheral circadian rhythms and clocks, revisit and expand classical circadian work on the worm’s chromatophores, investigate locomotion as read-out and include molecular analyses.ResultsWe establish that different pieces of the trunk exhibit synchronized, robust oscillations of core circadian clock genes. These circadian core clock transcripts are under strong control of the light-dark cycle, quickly losing synchronized oscillation under constant darkness, irrespective of the absence or presence of heads. Different wavelengths are differently effective in controlling the peripheral molecular synchronization. We have previously shown that locomotor activity is under circadian clock control. Here we show that upon decapitation it still follows the light-dark cycle, but does not free-run under constant darkness. We also observe the rhythmicity of pigments in the worm’s individual chromatophores, confirming that chromatophore size changes follow a circadian pattern. These size changes continue under constant darkness, but cannot be re-entrained by light upon decapitation.ConclusionsHere we provide the first basic characterization of the peripheral circadian clock ofPlatynereis dumerilii. In the absence of the head, light is essential as a major synchronization cue for peripheral molecular and locomotor circadian rhythms. Circadian changes in chromatophore size can however continue for several days in the absence of light/dark changes and the head. Thus, the dependence on the head depends on the type of peripheral rhythm studied. These data show that peripheral circadian rhythms and clocks should be considered when investigating the interactions of clocks with different period lengths, a notion likely also true for other organisms with circadian and non-circadian clocks.


Sign in / Sign up

Export Citation Format

Share Document