scholarly journals Roles of Neuropeptides, VIP and AVP, in the Mammalian Central Circadian Clock

2021 ◽  
Vol 15 ◽  
Author(s):  
Daisuke Ono ◽  
Ken-ichi Honma ◽  
Sato Honma

In mammals, the central circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Individual SCN cells exhibit intrinsic oscillations, and their circadian period and robustness are different cell by cell in the absence of cellular coupling, indicating that cellular coupling is important for coherent circadian rhythms in the SCN. Several neuropeptides such as arginine vasopressin (AVP) and vasoactive intestinal polypeptide (VIP) are expressed in the SCN, where these neuropeptides function as synchronizers and are important for entrainment to environmental light and for determining the circadian period. These neuropeptides are also related to developmental changes of the circadian system of the SCN. Transcription factors are required for the formation of neuropeptide-related neuronal networks. Although VIP is critical for synchrony of circadian rhythms in the neonatal SCN, it is not required for synchrony in the embryonic SCN. During postnatal development, the clock genes cryptochrome (Cry)1 and Cry2 are involved in the maturation of cellular networks, and AVP is involved in SCN networks. This mini-review focuses on the functional roles of neuropeptides in the SCN based on recent findings in the literature.

2021 ◽  
Vol 22 (2) ◽  
pp. 676
Author(s):  
Andy W. C. Man ◽  
Huige Li ◽  
Ning Xia

Every organism has an intrinsic biological rhythm that orchestrates biological processes in adjusting to daily environmental changes. Circadian rhythms are maintained by networks of molecular clocks throughout the core and peripheral tissues, including immune cells, blood vessels, and perivascular adipose tissues. Recent findings have suggested strong correlations between the circadian clock and cardiovascular diseases. Desynchronization between the circadian rhythm and body metabolism contributes to the development of cardiovascular diseases including arteriosclerosis and thrombosis. Circadian rhythms are involved in controlling inflammatory processes and metabolisms, which can influence the pathology of arteriosclerosis and thrombosis. Circadian clock genes are critical in maintaining the robust relationship between diurnal variation and the cardiovascular system. The circadian machinery in the vascular system may be a novel therapeutic target for the prevention and treatment of cardiovascular diseases. The research on circadian rhythms in cardiovascular diseases is still progressing. In this review, we briefly summarize recent studies on circadian rhythms and cardiovascular homeostasis, focusing on the circadian control of inflammatory processes and metabolisms. Based on the recent findings, we discuss the potential target molecules for future therapeutic strategies against cardiovascular diseases by targeting the circadian clock.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Clara Hozer ◽  
Martine Perret ◽  
Samuel Pavard ◽  
Fabien Pifferi

Abstract Circadian rhythms are ubiquitous attributes across living organisms and allow the coordination of internal biological functions with optimal phases of the environment, suggesting a significant adaptive advantage. The endogenous period called tau lies close to 24 h and is thought to be implicated in individuals’ fitness: according to the circadian resonance theory, fitness is reduced when tau gets far from 24 h. In this study, we measured the endogenous period of 142 mouse lemurs (Microcebus murinus), and analyzed how it is related to their survival. We found different effects according to sex and season. No impact of tau on mortality was found in females. However, in males, the deviation of tau from 24 h substantially correlates with an increase in mortality, particularly during the inactive season (winter). These results, comparable to other observations in mice or drosophila, show that captive gray mouse lemurs enjoy better fitness when their circadian period closely matches the environmental periodicity. In addition to their deep implications in health and aging research, these results raise further ecological and evolutionary issues regarding the relationships between fitness and circadian clock.


2021 ◽  
Author(s):  
Qianzhun Huang ◽  
Xiaoyang Su ◽  
Ning Fang ◽  
Jian Huang

Abstract Background: Dysregulated circadian dynamic balance is strongly associated with cancer development. However, biological functions of circadian rhythms in lung adenocarcinoma (LUAD) have not been elucidated. This study aimed at valuating the modulatory effects of circadian rhythms in the LUAD tumor microenvironment.Methods: Multiple open-source bioinformatics research platforms are used to comprehensively elucidate the expression level, prognosis, potential biological function, drug sensitivity, and immune microenvironment of circadian clock genes in LUAD.Results: Most circadian clock genes in LUAD are dysregulated and are strongly correlated with patient prognosis, and missense mutations at splicing sites of these genes. Besides, these genes are closely associated with some well-known cancer-related marker pathways, which are mainly involved in the inhibition of the Apoptosis, Cell cycle, and DNA Damage Response Pathway. Furthermore, functional enrichment analysis revealedthat circadian clock genes regulate transcription factor activities and circadian rhythms in LUAD tissues. As for drug sensitivity, high expression of CLOCK, CRY1, and NR1D2 as well as suppressedPER2 and CRY2 expression levels are associated with drug resistance. The expression levels of circadian clock genes in LUAD correlate with immune infiltration and are involved in the regulation of immunosuppression.Conclusions: Our multi-omics analysis provides a more comprehensive understanding of the molecular mechanisms of the circadian clock genes in LUAD and provides new insights for a more precise screening of prognostic biomarkers and immunotherapy.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4877 ◽  
Author(s):  
Azka Hassan ◽  
Jamil Ahmad ◽  
Hufsah Ashraf ◽  
Amjad Ali

Circadian rhythms maintain a 24 h oscillation pattern in metabolic, physiological and behavioral processes in all living organisms. Circadian rhythms are organized as biochemical networks located in hypothalamus and peripheral tissues. Rhythmicity in the expression of circadian clock genes plays a vital role in regulating the process of cell division and DNA damage control. The oncogenic protein, MYC and the tumor suppressor, p53 are directly influenced by the circadian clock. Jet lag and altered sleep/wake schedules prominently affect the expression of molecular clock genes. This study is focused on developing a Petri net model to analyze the impacts of long term jet lag on the circadian clock and its probable role in tumor progression. The results depict that jet lag disrupts the normal rhythmic behavior and expression of the circadian clock proteins. This disruption leads to persistent expression of MYC and suppressed expression of p53. Thus, it is inferred that jet lag altered circadian clock negatively affects the expressions of cell cycle regulatory genes and contribute in uncontrolled proliferation of tumor cells.


2013 ◽  
Vol 647 ◽  
pp. 391-395
Author(s):  
Liu Sen ◽  
Song Liu

Regulation of daily physiological functions with approximate a 24-hour periodicity, or circadian rhythms, is a characteristic of eukaryotes. So far, cyanobacteria are only known prokaryotes reported to possess circadian rhythmicity. The circadian system in cyanobacteria comprises both a post-translational oscillator (PTO) and a transcriptional/translational feedback loop (TTFL). The PTO can be reconstituted in vitro with three purified proteins (KaiA, KaiB, and KaiC) with the existence of ATP. Phase of the nanoclockwork has been associated with the phosphorylation states of KaiC, with KaiA promoting the phosphorylation of KaiC, and KaiB de-phosphorylating KaiC. Here we studied the evolution of the KaiB protein. The result will be helpful in understanding the evolution of the circadian clock system.


Science ◽  
2008 ◽  
Vol 322 (5909) ◽  
pp. 1832-1835 ◽  
Author(s):  
Allan B. James ◽  
José A. Monreal ◽  
Gillian A. Nimmo ◽  
Ciarán L. Kelly ◽  
Pawel Herzyk ◽  
...  

The circadian oscillator in eukaryotes consists of several interlocking feedback loops through which the expression of clock genes is controlled. It is generally assumed that all plant cells contain essentially identical and cell-autonomous multiloop clocks. Here, we show that the circadian clock in the roots of matureArabidopsisplants differs markedly from that in the shoots and that the root clock is synchronized by a photosynthesis-related signal from the shoot. Two of the feedback loops of the plant circadian clock are disengaged in roots, because two key clock components, the transcription factors CCA1 and LHY, are able to inhibit gene expression in shoots but not in roots. Thus, the plant clock is organ-specific but not organ-autonomous.


2018 ◽  
Vol 179 (1) ◽  
pp. R1-R18 ◽  
Author(s):  
Ayrton Custodio Moreira ◽  
Sonir Rauber Antonini ◽  
Margaret de Castro

The circadian rhythm of glucocorticoids has long been recognised within the last 75 years. Since the beginning, researchers have sought to identify basic mechanisms underlying the origin and emergence of the corticosteroid circadian rhythmicity among mammals. Accordingly, Young, Hall and Rosbash, laureates of the 2017 Nobel Prize in Physiology or Medicine, as well as Takahashi’s group among others, have characterised the molecular cogwheels of the circadian system, describing interlocking transcription/translation feedback loops essential for normal circadian rhythms. Plasma glucocorticoid circadian variation depends on the expression of intrinsic clock genes within the anatomic components of the hypothalamic–pituitary–adrenal axis, which are organised in a hierarchical manner. This review presents a general overview of the glucocorticoid circadian clock mechanisms, highlighting the ontogeny of the pituitary–adrenal axis diurnal rhythmicity as well as the involvement of circadian rhythm abnormalities in the physiopathology and diagnosis of Cushing’s disease.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4613-4613
Author(s):  
Ming-Yu Yang ◽  
Pai-Mei Lin ◽  
Jui-Feng Hsu ◽  
Wen-Chi Yang ◽  
Yi-Chang Liu ◽  
...  

Abstract Abstract 4613 Circadian rhythms regulate various functions of human body and disruption of circadian rhythm has been associated with cancer development and tumor progression. Circadian clock genes use transcriptional-translational feedback loops to control circadian rhythms. Many transcriptional regulators are histone acetyltransferases (HAT) or histone deacetylases (HDAC). As clock function and integration of inputs rely on transcriptional regulation, it is possible that chromatin is remodeled during circadian cycles and in response to signals that regulate the clock. SIRT1 (sirtuin 1) is a HDAC that has recently been identified as a crucial modulator of the circadian clock machinery. To date, at least 7 SIRT genes (SIRT1–7) have been identified. In our previous report we have demonstrated the daily expression patterns of PER1, PER2, PER3, CRY1, CRY2, and CKIe in peripheral blood (PB) of healthy individuals were abolished in chronic myeloid leukemia (CML) patients and partial recoveries of daily patterns were observed in CML patients with complete cytogenetic response (CCyR) and major molecular response (MMR) post-imatinib treatment [J Biol Rhythms 2011]. In this study we further investigated the expression profiles of the 7 SIRT genes (SIRT1–7) in PB total leukocytes from 49 CML and 22 healthy volunteers. Collection of PB was carried out at four time points: 2000 h, 0200 h, 0800 h, and 1400 h, respectively. In PB total leukocytes of healthy individuals, the daily pattern of SIRT1 (p < 0.01) and SIRT5 (p < 0.05) expression level peaked at 0200 h, and SIRT2 (p < 0.01) peaked at 0800 h. Daily pattern expression of these 3 genes was abolished in newly diagnosed pre-imatinib mesylate treated and blast crisis-phase CML patients. Partial daily patterns of gene expression recoveries were observed in CML patients with CCyR and MMR. In some serial monitored individual patients, the recoveries of oscillations of SIRT1, 2, and 5 genes expression accompanied with the disappearance of BCR-ABL transcripts were also noted. The expression of SIRT3, 6, and 7 did not show a time-dependent variation among the healthy and CML patients. SIRT4 expression was undetectable both in the healthy and CML patients. Updated in vitro study results of the regulation of SIRT1, 2, and 5 genes on circadian clock genes expression will be presented at the meeting. Disclosures: No relevant conflicts of interest to declare.


2010 ◽  
Vol 2 (2) ◽  
pp. 16
Author(s):  
Anna Meiliana ◽  
Andi Wijaya

BACKGROUND: Epidemiological data reveal parallel trends of decreasing sleep duration and increases in metabolic disorders such as obesity, diabetes and hypertension. There is growing evidence that these trends are mechanistically related.CONTENT: The circadian system orchestrates the temporal organization of many aspects of physiology, including metabolism, in synchrony with the 24 hours rotation of the Earth. The circadian system is a complex feedback network that involves interactions between the central nervous system and peripheral tissues. Circadian regulation is intimately linked to metabolic homeostasis and that dysregulation of circadian rhythms can contribute to disease. Conversely, metabolic signals also feed back into the circadian system, modulating circadian gene expression and behavior.SUMMARY: Both inter- and intraorgan desynchrony may be involved in the pathogenesis of cardiometabolic disease attributable to effects in brain and multiple metabolic tissues including heart, liver, fat, muscle, pancreas and gut. Efforts to dissect the molecular mediators that coordinate circadian, metabolic, and cardiovascular systems may ultimately lead to both improved therapeutics and preventive interventions.KEYWORDS: circadian rhythms, clock genes, nuclear receptor, sleep, obesity, cardiometabolic risk


Sign in / Sign up

Export Citation Format

Share Document