Character association and assessment of yield loss in pigeonpea cultivars infested by pod fly and bruchid

Author(s):  
B. Kiran Gandhi ◽  
Sanjay M. Bandi Kaur ◽  
S. J. Satheesh Naik ◽  
S. J. Satheesh Naik ◽  
S. K. Singh ◽  
...  

Field studies were conducted at IIPR, Kanpur, India to estimate the intensity of field infestation on pigeonpea by pod fly and bruchids, and whether or not the phenotypic characters of the pigeonpea related to infestation caused by these insects. A total 32 long duration pigeonpea cultivars and advanced breeding lines were planted in augmented design along with check ‘Bahar’ and evaluated on the basis of exit holes and windows per pod, seed damage (%) by pod fly maggot and bruchid grub, 100 damaged seeds weight and relative resistant rating. Breeding line IPA-92 and a cultivar MA-3 were found to be highly resistant against pod fly, preventing them from crafting exit holes on pods and seed damage (%). Bruchid (C. chinensis and C. maculatus) was vulnerable to make windows on pods damaging the seeds of cultivars viz., IPA-15-1, IPA-15-5, IPA-15-7, IPA-15-10, IPA-15-12, IPA-15-14, MA-3, IPA-92, AZAD, IPA-234, BSMR-736, IPA-13-1 and IPA-37. Correlation studies revealed that pod fly infestation was the major biotic factor, which causes significant seeds damage and yield reduction in pigeonpea cultivars and advanced breeding lines. Those cultivars and breeding lines exhibited resistant reaction on pod fly and bruchids infestation might be used as donors in resistance breeding programme and including in IPM modules against these insect pests.

HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 444f-445
Author(s):  
J.W. Gonzales ◽  
D.P. Coyne ◽  
W.W. Stroup

Iron deficiency chlorosis (FeDC) can cause significant seed yield reduction in dry beans (Phaseolus vulgaris L.) grown on high-pH calcareous soils. To determine the effects of FeDC on seed yield, and the effect of Fe-spray as a correction factor for FeDC, 22 breeding lines/cultivars were planted on high-pH (8.0), calcareous (3.2–3.5 calcium carbonate equivalent), and low-Fe (1.8–4.2 ppm DTPA) sandy clay loam Tripp soils at Mitchell and Scottsbluff in western Nebraska. A split-plot design was used with Fe treatments as main plots and breeding lines/cultivars as subplots. Three foliar sprays of Fe-EDDHA (2.4 kg·ha–1) were applied at V4, R5, and R7 dry bean growth stages, during 1996 and 1997. Leaf chlorosis was measured simultaneously by using a Minolta Chroma-meter (CIE L* a* b* color space system), a Minolta Chlorophyll-meter (chlorophyll content index), and by visual ratings (1 = normal green to 5 = severe chlorosis). In 1996 no significant Fe-spray × line interaction (P = 0.776) and Fe-spray effect (P = 0.884) on seed yield was observed. Breeding lines showed significant differences in seed yield (P = 0.0001) with WM2-96-5 being the highest-yielding line (4047 kg·ha–1). In 1997 a significant Fe spray × line interaction (P = 0.029) was observed. The cultivar Chase without Fe spray (3375 kg·ha–1), and lines WM2-96-5 (3281 kg·ha–1), WM2-96-8 (3171 kg·ha–1) with Fe spray were the highest yielding entries under those treatments. Differences in visual ratings after the third Fe spray in 1997 were significant (P = 0.004) for Fe spray × line interaction. In 1996 visual ratings were different only for breeding lines. Chlorophyll content index showed a significant Fe spray × line interaction after the second Fe spray (P = 0.022) and after the third Fe spray (P = 0.0003) in 1997.


1995 ◽  
Vol 75 (2) ◽  
pp. 437-439 ◽  
Author(s):  
G. R. Stringam ◽  
V. K. Bansal ◽  
M. R. Thiagarajah ◽  
D. F. Degenhardt ◽  
J. P. Tewari

The doubled haploid breeding method and greenhouse screening using cotyledon bio-assay were successfully applied to transfer blackleg resistance from the Australian cultivar Maluka (Brassicas napus), into susceptible advanced B. napus lines from the University of Alberta. This approach for blackleg resistance breeding was effective and efficient as several superior blackleg resistant breeding lines were identified within 4 yr from the initial cross. One of these lines (91–21864NA) was entered in the 1993 trials of the Western Canada Canola/Rapeseed Recommending Committee. Key words: Blackleg resistance, Leptosphaeria maculans, doubled haploid, Brassica napus


2017 ◽  
Vol 32 (2) ◽  
pp. 135-140 ◽  
Author(s):  
M. Ryan Miller ◽  
Jason K. Norsworthy

AbstractTo address recent concerns related to auxin herbicide drift onto soybean, a study was developed to understand the susceptibility of the reproductive stage of soybean to a new auxin herbicide compared with dicamba. Florpyrauxifen-benzyl is under development as the second herbicide in a new structural class of synthetic auxins, the arylpicolinates. Field studies were conducted to (1) evaluate and compare reproductive soybean injury and yield following applications of florpyrauxifen-benzyl or dicamba across various concentrations and reproductive growth stages and (2) determine whether low-rate applications of florpyrauxifen-benzyl or dicamba to soybean in reproductive stages would have similar effect on the progeny of the affected plants. Soybean were treated with 0, 1/20, or 1/160, of the 1X rate of florpyrauxifen-benzyl (30 g ai ha−1) or dicamba (560 g ae ha−1) at R1, R2, R3, R4, or R5 growth stage. Soybean plant height and yield was reduced from 1/20X dicamba across all reproductive stages. High drift rates (1/20X) of florpyrauxifen-benzyl also reduced soybean plant height >25% and yield across R1 to R4 stages. Germination, stand, plant height, and yield of the offspring of soybean plants treated with dicamba and florpyrauxifen-benzyl were significantly affected. Dicamba applied at a rate of 1/20X at R4 and R5 resulted in 20% and 35% yield reduction for the offspring, respectively. A similar reduction occurred from florpyrauxifen-benzyl applied at R4 and R5 at the 1/20X rate, resulting in 15% to 24% yield reduction for the offspring, respectively. Based on these findings, it is suggested that growers use caution when applying these herbicides in the vicinity of reproductive soybean.


Weed Science ◽  
2019 ◽  
pp. 1-21 ◽  
Author(s):  
Sudheesh Manalil ◽  
Hafiz Haider Ali ◽  
Bhagirath Singh Chauhan

Abstract Annual sowthistle (Sonchus oleraceus L.) is a broadleaf weed that is increasing in prevalence in the northern cropping regions of Australia. Being a member of Asteraceae family, this weed possesses many biological attributes needed to thrive in varying environments and weed management pressure. Interference of this weed was examined in a wheat (Triticum aestivum L.) crop through field studies in 2016 and 2017. Different densities of S. oleraceus were evaluated for their potential to cause yield loss in wheat: 0.0 (weed free), low (9 to 15 plants m−2), medium (29 to 38 plants m−2), and high (62 to 63 plants m−2). Based on the exponential decay model, 43 and 52 plants m−2 caused a yield reduction of 50% in 2016 and 2017, respectively. Yield components such as panicles m−2 and grains per panicles were affected by weed density. At the high weed infestation level, S. oleraceus produced a maximum of 182,940 and 192,657 seeds m−2 in 2016 and 2017, respectively. Sonchus oleraceus exhibited poor seed retention at harvest as more than 95% of seeds were blown away by wind. Adverse effects on crop, high seed production and wind-blown dispersal may lead to an increased prevalence of this weed in the absence of an integrated weed management strategy utilizing both herbicides and non-chemical options.


Plant Disease ◽  
2021 ◽  
Author(s):  
Anfei Fang ◽  
Zhuangyuan Fu ◽  
Zexiong Wang ◽  
Yuhang Fu ◽  
Yubao Qin ◽  
...  

Rice false smut caused by Ustilaginoidea virens is currently one of the most devastating fungal diseases of rice panicles worldwide. In this study, two novel molecular markers derived from SNP-rich genomic DNA fragments and a previously reported molecular marker were used for analyzing the genetic diversity and population structure of 167 U. virens isolates collected from nine areas in Sichuan-Chongqing region, China. A total of 62 haplotypes were identified, and a few haplotypes with high frequency were found and distributed in two to three areas, suggesting gene flow among different geographical populations. All isolates were divided into six genetic groups. The groups Ⅰ and Ⅵ were the largest including 61 and 48 isolates, respectively. The pairwise FST values showed significant genetic differentiation among all compared geographical populations. AMOVA showed that intergroup genetic variation accounted for 40.17% of the total genetic variation, while 59.83% of genetic variation came from intragroup. The UPGMA dendrogram and population structure revealed that the genetic composition of isolates collected from ST (Santai), NC (Nanchong), YC (Yongchuan), and WS (Wansheng) dominated by the same genetic subgroup was different from those collected from other areas. In addition, genetic recombination was found in a few isolates. These findings will help to improve the strategies for rice false smut management and resistance breeding, such as evaluating breeding lines with different isolates or haplotypes at different elevations and landforms.


2013 ◽  
Vol 14 (1) ◽  
pp. 31 ◽  
Author(s):  
Imana L. Power ◽  
Albert K. Culbreath ◽  
Barry L. Tillman

Peanut rust, caused by Puccinia arachidis Speg, is an important foliar disease of peanut (Arachis hypogaea L.) in tropical countries. The best option for disease management is host resistance. The objectives of this project included characterizing peanut genotypes for resistance to P. arachidis, assessing the genetic variation of newly developed Collaborative Research and Support Program (CRSP) peanut breeding lines, and assessing genetic variability among P. arachidis populations. In field studies conducted over 2010-2011, several CRSP breeding lines demonstrated varying levels of rust resistance. Detached leaf assays were used to examine the components of resistance to P. arachidis. Few significant differences were observed in these studies. We used SSR markers to characterize newly developed CRSP breeding lines, plant introductions, and commonly grown cultivars. The SSR markers used detected polymorphisms but were not able to distinguish resistant from susceptible peanut genotypes. Sequences of the 5.8S-ITS2-28S region of P. arachidis isolates collected from different regions in the United States and other countries do not indicate high genetic variability among the populations. Accepted for publication 23 September 2013. Published 25 November 2013.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
W. James Grichar ◽  
Jack J. Rose ◽  
Peter A. Dotray ◽  
Todd A. Baughman ◽  
D. Ray Langham ◽  
...  

Growth chamber experiments were conducted to evaluate the response of sesame to PRE and POST applications of soil residual herbicides. PRE applications of acetochlor andS-metolachlor at 1.26 and 1.43 kg ai·ha−1showed little or no sesame injury (0 to 1%) 4 wks after herbicide treatments (WAT). POST treatments of acetochlor and trifluralin made 3 wks after planting (WAP) resulted in greater sesame injury (40%) compared to applications at bloom (18%). Field studies were conducted in Texas and Oklahoma during the 2014 and 2015 growing seasons to determine sesame response to clethodim, diuron, fluometuron, ethalfluralin, quizalofop-P, pendimethalin, pyroxasulfone, trifluralin, and trifloxysulfuron-sodium applied 2, 3, or 4 weeks after planting (WAP). Late-season sesame injury with the dinitroaniline herbicides consisted of a proliferation of primary branching at the upper nodes of the sesame plant (in the shape/form of a broom). Ethalfluralin and trifluralin caused more “brooming” effect than pendimethalin. Some yield reductions were noted with the dinitroaniline herbicides. Trifloxysulfuron-sodium caused the greatest injury (up to 97%) and resulted in yield reductions from the untreated check. Early-season diuron injury (leaf chlorosis and necrosis) decreased as application timing was delayed, and late-season injury was virtually nonexistent with only slight chlorosis (<4%) still apparent on the lower leaves. Sesame yield was not consistently affected by the diuron treatments. Fluometuron caused early-season injury (stunting/chlorosis), and a reduction of yield was observed at one location. Pyroxasulfone applied 2 WAP caused up to 25% sesame injury (stunting) but did not result in a yield reduction. Quizalofop-P caused slight injury (<5%) and no reduction in yield.


2008 ◽  
Vol 43 (2) ◽  
pp. 225-240 ◽  
Author(s):  
R. M. McPherson ◽  
W. C. Johnson ◽  
E. G. Fonsah ◽  
P. M. Roberts

A series of replicated field experiments was conducted with vegetable soybean (edamame), Glycine max (L.) Merrill, to assess the impacts of cultivars, planting dates, and insecticidal controls on insect pest abundance, crop damage and yield potential. The velvetbean caterpillar, Anticarsia gemmatalis Hübner, was the most common lepidopteran defoliator in this study, causing heavy defoliation in some years when left untreated. Other lepidopterans observed included the soybean looper, Pseudoplusia includens (Walker), and the green cloverworm, Hypena scabra (F.). Stink bugs, primarily the southern green stink bug, Nezara viridula (L.), also caused seed damage in some cultivars when left untreated. Stink bug damage exceeded expectations on edamame seeds when exposed to moderate stink bug densities (≤3 bugs per 25 sweeps). Other arthropods that were commonly observed included threecornered alfalfa hoppers, Spissistilus festinus (Say), grasshoppers, Melanoplus spp., and the potato leafhopper, Empoasca fabae (Harris). Arthropod infestations on edamame were similar to reported pest problems on conventional soybeans being produced for oil and meal. Midseason applications of the insecticides diflubenzuron plus l-cyhalothrin reduced insect pest populations, percentage of arthropod-induced defoliation and percentage of seeds damaged by stink bugs, but had little effect on edamame yields. Most defoliation and seed damage occurred during R5 development when seeds were approaching full size, thus only minimal yield reductions were noted. However, seed quality of the untreated vegetable soybeans would be unacceptable for the consumer. Total fresh green yields ranged from 2343–11,895 kg ha−1, depending on year, cultivar and planting date, whereas fresh green seed yields ranged from 1208–6,119 kg ha−1. Early-maturing edamame cultivars planted in April had fewer insect pests and less damage than the cultivars planted later. Avoidance of insect pests is an important production consideration for insect management, especially critical in an organic production system. The fresh green seed yields produced during this study demonstrate that this emerging alternative crop has the potential for economic success in the southern region, assuming that the arthropod pests are effectively managed to maintain acceptable edamame quality and yield.


1980 ◽  
Vol 60 (3) ◽  
pp. 403-410 ◽  
Author(s):  
J. W. KETCHESON

Ontario holds a significant proportion of the land base for Canada’s food production. Many of the soils are vulnerable to the effects of erosion and intense cropping. Laboratory and field studies indicate that monoculture systems without grass-legume forages lower organic C and N equilibrium levels. Structure and tilth, in terms of total porosity and stable aggregation, are impaired. Marked increases in land areas in monoculture, particularly corn and beans, have occurred in the last 20 yr and could lead to lower yield potentials. However, contrary to this expected trend in soil productivity, Ontario’s census records indicate a yield increase of 1.88 t/ha for nine commonly-grown crops over the 20-yr period. Fertilizer recommendations at the end of the period have decreased to approximately 60% of the amount recommended at the beginning. Deterioration of soil by wind and water erosion is a matter of concern. While average losses are estimated between 0.07 and 1.9 t/ha for different watersheds, individual field situations exceed this and may create serious problems in yield reduction and impaired water quality.


2015 ◽  
Vol 29 (4) ◽  
pp. 665-674 ◽  
Author(s):  
Darrin M. Dodds ◽  
Christopher L. Main ◽  
L. Thomas Barber ◽  
Charles Burmester ◽  
Guy D. Collins ◽  
...  

Field studies were conducted in Alabama, Arkansas, Georgia, Louisiana, Mississippi, North Carolina, and Tennessee during 2010 and 2011 to determine the effect of glufosinate application rate on LibertyLink and WideStrike cotton. Glufosinate was applied in a single application (three-leaf cotton) or sequential application (three-leaf followed by eight-leaf cotton) at 0.6, 1.2, 1.8, and 2.4 kg ai ha−1. Glufosinate application rate did not affect visual injury or growth parameters measured in LibertyLink cotton. No differences in LibertyLink cotton yield were observed because of glufosinate application rate; however, LibertyLink cotton treated with glufosinate yielded slightly more cotton than the nontreated check. Visual estimates of injury to WideStrike cotton increased with each increase in glufosinate application rate. However, the injury was transient, and by 28 d after the eight-leaf application, no differences in injury were observed. WideStrike cotton growth was adversely affected during the growing season following glufosinate application at rates of 1.2 kg ha−1 and greater; however, cotton height and total nodes were unaffected by glufosinate application rate at the end of the season. WideStrike cotton maturity was delayed, and yields were reduced following glufosinate application at rates of 1.2 kg ha−1 and above. Fiber quality of LibertyLink and WideStrike cotton was unaffected by glufosinate application rate. These data indicate that glufosinate may be applied to WideStrike cotton at rates of 0.6 kg ha−1 without inhibiting cotton growth, development, or yield. Given the lack of injury or yield reduction following glufosinate application to LibertyLink cotton, these cultivars possess robust resistance to glufosinate. Growers are urged to be cautious when increasing glufosinate application rates to increase control of glyphosate-resistant Palmer amaranth in WideStrike cotton. However, glufosinate application rates may be increased to maximum labeled rates when making applications to LibertyLink cotton without fear of reducing cotton growth, development, or yield.


Sign in / Sign up

Export Citation Format

Share Document