Responses of Mungbean to Water Deficit, Water use Efficiency and Drought Resistance

Author(s):  
B. Sajitha ◽  
R. Karthiyayini ◽  
Samundeeswari .

Backround: Legumes are the second important agricultural crop of great prominence to humans. Among 20000 legume species the mungbean is one of the most important grain cultivated in India. Drought is a major environmental stress that affects mungbean in the sub-humid, dry and intermediate zones of India. The present study records the response of mung bean varieties to water stress during its growth stage.Methods: The impact of drought stress imposed on the crop was evaluated by measuring the water relation parameters and the biochemical progresses like osmolyte accumulation, nitrate assimilation and antioxidant system in Mung bean during 2017-2018 in Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore.Result: Drought stress altered the water status of the crop by reducing the RWC, which was enhanced in drought susceptible varieties. Increased amount of proline denotes the osmoregulatory mechanism in the crop to bring about resistance and the elevated levels of antioxidant enzymes shows the protective mechanism in the crop at cellular level.

2021 ◽  
Vol 12 ◽  
Author(s):  
Shenglan Li ◽  
Liang Fang ◽  
Josefine Nymark Hegelund ◽  
Fulai Liu

Increasing atmospheric CO2 concentrations accompanied by abiotic stresses challenge food production worldwide. Elevated CO2 (e[CO2]) affects plant water relations via multiple mechanisms involving abscisic acid (ABA). Here, two tomato (Solanum lycopersicum) genotypes, Ailsa Craig (AC) and its ABA-deficient mutant (flacca), were used to investigate the responses of plant hydraulic conductance to e[CO2] and drought stress. Results showed that e[CO2] decreased transpiration rate (E) increased plant water use efficiency only in AC, whereas it increased daily plant water consumption and osmotic adjustment in both genotypes. Compared to growth at ambient [CO2], AC leaf and root hydraulic conductance (Kleaf and Kroot) decreased at e[CO2], which coincided with the transcriptional regulations of genes of plasma membrane intrinsic proteins (PIPs) and OPEN STOMATA 1 (OST1), and these effects were attenuated in flacca during soil drying. Severe drought stress could override the effects of e[CO2] on plant water relation characteristics. In both genotypes, drought stress resulted in decreased E, Kleaf, and Kroot accompanied by transcriptional responses of PIPs and OST1. However, under conditions combining e[CO2] and drought, some PIPs were not responsive to drought in AC, indicating that e[CO2] might disturb ABA-mediated drought responses. These results provide some new insights into mechanisms of plant hydraulic response to drought stress in a future CO2-enriched environment.


2020 ◽  
Author(s):  
Jonas Van Laere ◽  
Annemie Willemen ◽  
Yang Ding ◽  
Hami Said ◽  
Christian Resch ◽  
...  

<p>It is predicted that climate change will cause an increase in frequency and duration of dry spells in Central Africa. This will lower yields of cassava (<em>Manihot esculenta</em> Crantz), a starchy root crop consumed daily by almost 800 million people in the tropics. Potassium has been considered as an important plant nutrient in mitigating the impact of drought stress because of its critical role in stomatal regulation, as an osmolyte, as well as in starch synthesis and assimilate translocation. This study aims to quantify the effects of potassium fertilizer on water use efficiency and translocation speed of new assimilates in water-stressed cassava plants at early bulking stage.</p><p>Cassava cuttings (Bailo variety), originating from the Eastern Democratic Republic of Congo, were grown in pots filled with 5 kg of calcium carbonate free sand substrate and fertilized with a complete nutrient solution either high (+K; 1.437 mM K<sup>+</sup>) or low (-K; 0.359 mM K<sup>+</sup>) in potassium. All pots were weighed every other to each day to monitor water use and were watered to field capacity. A drought treatment was imposed on half of the plants two months after planting by reducing irrigation amounts by half. Plants were put in an airtight walk-in growth chamber enriched with <sup>13</sup>C-CO<sub>2</sub> (for 8 h) to trace the translocation of new assimilates. One, nine and twenty-four days after labelling, plants were harvested and δ<sup>13</sup>C values for different plant organs were analysed.</p><p>Plant water use was higher in plants under low potassium nutrition (-K) in the period prior to imposition of drought. Data on biomass production and δ<sup>13</sup>C and δ<sup>18</sup>O values of these plants will further help understand whether the observed difference in water use also leads to a difference in water use efficiency. Further, a <sup>13</sup>C mass balance will be composed. These data, to be presented at EGU 2020, will provide information on the translocation speed of new assimilates from shoot to root and confirm whether potassium positively affects this process under dry conditions.</p>


2015 ◽  
Vol 42 (10) ◽  
pp. 1001 ◽  
Author(s):  
Helen Bramley ◽  
Rebecca Bitter ◽  
Gertraud Zimmermann ◽  
Ulrich Zimmermann

Information about water relations within crop canopies is needed to improve our understanding of canopy resource distribution and crop productivity. In this study, we examined the dehydration/rehydration kinetics of different organs of wheat plants using ZIM-probes that continuously monitor water status non-destructively. ZIM-probes were clamped to the flag leaf and penultimate leaf of the same stem to monitor changes in turgor pressure, and a novel stem probe was clamped to the peduncle (just below the spike of the same stem) to monitor changes in stem water status. All organs behaved similarly under well-watered conditions, dehydrating and recovering at the same times of day. When water was withheld, the behaviour diverged, with the leaves showing gradual dehydration and incomplete recovery in leaf turgor pressure during the night, but the stem was affected to a lesser extent. Penultimate leaves were the most severely affected, reaching turgor loss point before the flag leaf. Upon rewatering, turgor pressure recovered but the output patch-pressure of the probes (Pp) oscillated at ~30 min periods in all organs of most plants (n = 4). Oscillations in Pp were attributed to oscillations in stomatal opening and appear to only occur above a threshold light intensity. The mechanisms identified in this study will be beneficial for crop productivity because the flag leaf is the source of most photoassimilates in developing grains, so the plant’s ability to maintain flag leaf hydration at the expense of older leaves should moderate the impact of drought on yield. Stomatal oscillations could increase water use efficiency as the plant attempts to rehydrate after drought.


2021 ◽  
Vol 20 (4) ◽  
pp. 43-57
Author(s):  
Zahoor Ahmad ◽  
Ejaz Ahmad Warraich ◽  
Muhammad Aamir Iqbal ◽  
Celaleddin Barutçular ◽  
Hesham Alharby ◽  
...  

Silicon (Si) is one of the best plant defense elements against the biotic and abiotic stresses. Camelina plants accumulate Si which serves in protection against drought stress. The present study was conducted to investigate the impact of different doses of foliage applied Si (0, 3, 6 and 9 mM) under water stress (40% field capacity, FC) and non-stress conditions (100% FC) on camelina genotypes (Canadian and Australian). The imposed drought drastically decreased the growth parameters like root-shoot length and plant fresh and dry weight and also had negative impact on the chlorophyll content along with water relation attributes (water potential, osmotic potential and turgor pressure). In contrast, total free amino acids, total soluble proteins, proline and antioxidants such as ascorbic peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were enhanced especially in water stressed Canadian genotype, while osmoprotectants (flavonoids, anthocyanins and glycinebetaine) and phenolics contents were decreased. On the other hand, the foliar application of Si was instrumental in enhancing the growth of camelina by increasing the chlorophyll contents and water relation of stressed and non-stressed plants. Similarly, the biochemical, osmoprotectants and antioxidant metabolism was also improved in camelina stressed plants through the application of foliar Si. In conclusion, foliar application of 6 mM Si at vegetative growth stage played a vital role in alleviating the drastic impact of water stress on camelina growth by improving the water status, chlorophyll content, accumulation of phenolics and osmoprotectants and activating antioxidants. Therefore, the foliar application of Si could be developed as an important biologically viable strategy for boosting the tolerance in camelina plants to water stress conditions.


2017 ◽  
Vol 13 (6) ◽  
pp. 116
Author(s):  
Mohammad H. Brake ◽  
Hassan R. Hamasha ◽  
Hussein M. Migdadi ◽  
Ashraf O. Khashroum ◽  
Moath Al-Gharaibeh ◽  
...  

In arid and semi-arid countries such as Jordan, shortage in water sources might affect agricultural development and reduces the effectiveness of economic benefits of most crops planted in such areas. Tomato is an important agricultural crop and faces severe drought stress due to climate changes, therefore, measurement of proline accumulation in plant tissues is used as an indicator for drought stress tolerance. This research was conducted at Jarash University Campus in northern Jordan. A field experiment was carried out to investigate the impact of different storage temperature (+4ºC, - 20ºC and -80ºC) and different storage durations (0, 3, 6 and 11 weeks) on proline content in five different Jordanian tomato landraces. Results indicated that the average free proline content for samples tested directly after leaves collection was 7.1 µmol/g. Proline content in leaves stored at +4 ºC for 3, 6, and 11 weeks was 4.8, 1.8, and 1.1µmol/g, respectively, while for -20ºC was 11.8, 7.9, and 9.5 µmol/g for samples stored for 3, 6, 11 weeks respectively. In contrast the highest values for these parameters were obtained from samples stored at -80ºC, the average measured values of free proline content were 9.5, 7.8, and 12.9 µmol/g at 3, 6, and 11 weeks of storage, respectively. Based on the results obtained by this research, it is recommended to measure proline content directly after leaves collection. However, for large number of samples, keeping the samples at -20ºC not longer than six weeks could be a solution. Finally, we highly recommend the development of in-field method for measurement of free proline content.


Author(s):  
Sheikh Tahir ◽  
Sadaf Iqbal ◽  
Zahoor Baba ◽  
Mudasir Nazir ◽  
Burhan Hamid ◽  
...  

The present study was conducted to find out the impact of inorganic nutrients (Nitrogen @ 20 kgha-1 and Phosphorus 40 kgha-1) blended with and without biofertilizers (Rhizobium and PSB) on growth and yield of mung bean. Significant increments in seed yield of 31.07% followed by 23.34% were recorded from the plots exposed to 20 kgN/ha + 40 kgP2O5/ha along with dual inoculation by Rizobium and PSB (T9) and 20 kgN/ha + 40 kgP2O5/ha + Rizobium (T7). Highest seed yield (13.23 q/ha) realized under T9 supported by increased final aboveground dry matter (29.33% & 26.21%), pod percentage (26.33% & 17.45%) and test weight (17.50% & 11.13%) compared to chemical fertilizers (T4 & T5 respectively). Highest number of nodules (68.17) & nitrogen use efficiency (18.32 kg/kg) were recorded at flowering (50 DAS) stage of the crop under treatment-9. Functional relation between nodulation, NUE, AAR, pods plant-1 and yield were positive and linear (R2=0.987, 0.9987, 0.9501, 0.9115, respectively). To ascertain the higher productivity in mung bean it is recommended that the application of phosphorus @ 40 kgha-1 with starter dosage of N @ 20 kgha-1 along with dual inoculation by Rizobium and PSB should be applied for higher seed yield under temperate agro-ecological conditions.


2016 ◽  
Vol 52 (3) ◽  
pp. 477-490 ◽  
Author(s):  
M. HUSSAIN ◽  
M. WAQAS-UL-HAQ ◽  
S. FAROOQ ◽  
K. JABRAN ◽  
M. FARROQ

SUMMARYThis study was conducted to improve wheat production under vegetative (early season) drought stress. Hydroprimed and osmoprimed (with CaCl2) seeds of wheat cultivars Lasani-2008 (LS-2008) and Triple Dwarf-1 (TD-1), were sown in 20 (narrow), 25 (medium), and 30 cm (wider) spaced rows. Crop was grown under well-watered conditions till physiological maturity or was subjected to drought stress (50% field capacity) during vegetative phase and then grown under well-watered conditions. Drought stress caused substantial reduction in grain and biological yields, related traits, harvest index (HI) and water use efficiency (WUE). Nonetheless, planting osmoprimed seeds in narrowly spaced rows significantly improved the grain yield, HI and WUE. However, wheat planted in wider rows had bold grains. Furthermore, wheat cultivar LS-2008 produced better yield, even under drought stress, than cultivar TD-1. Economic analysis indicated that planting osmoprimed seeds of wheat cultivar LS-2008 in narrowly spaced rows under early season drought yielded maximum economic benefits. In conclusion, planting osmoprimed seeds of cultivar LS-2008 in narrowly spaced rows is a good agronomic option to improve the wheat performance under early season drought stress.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1422
Author(s):  
Juan Carlos Suárez ◽  
Cristian Gelpud ◽  
Jhon Eduar Noriega ◽  
Fausto Andrés Ortiz-Morea

The cultivation of cocoa (Theobroma cacao L.) is traditionally managed under shade because of its photosynthetic characteristics; however, its behavior can vary according to the genotype and environmental conditions where it is grown. In this sense, here, we explore the possible mechanisms of protection against radiation stress and how these mechanisms are affected by variation between cocoa genotypes. Therefore, we evaluate the effect of the radiation level (HPAR, 2100 ± 46 mol m−2 s−1; MPAR, 1150 ± 42 mol m−2 s−1; LPAR, 636 ± 40 mol m−2 s−1) on the water status and gas exchange in plants of different cocoa genotypes (CCN-51, ICS-1, ICS-95, LUKER-40 and LUKER-50), and the occurrence of photoinhibition of PSII (as a marker of photodamage), followed by a characterization of the protection mechanisms, including the dynamics of photosynthetic pigments and enzymatic and non-enzymatic antioxidant systems. We found significant changes in the specific leaf area (SLA) and the water potential of the leaf (ΨL) due to the level of radiation, affecting the maximum quantum yield of PSII (Fv/Fm), which generated dynamic photoinhibition processes (PIDyn). Cocoa genotypes showed the lowest Light-saturated maximum net carbon assimilation rate (Amax) in HPAR. Moreover, the maximum carboxylation rate (Vcmax) was negatively affected in HPAR for most cocoa genotypes, indicating less RuBisCO activity except for the ICS-95 genotype. The ICS-95 showed the highest values of Vcmax and maximum rate of regeneration of ribulose-1,5-bisphosphate (RuBP) controlled by electron transport (Jmax) under HPAR. Hence, our results show that some genotypes were acclimated to full sun conditions, which translated into greater carbon use efficiency due to the maximization of photosynthetic rates accompanied by energy dissipation mechanisms.


Sign in / Sign up

Export Citation Format

Share Document