Seed Priming: A Low Cost Input for Yield Maximization of Rainfed Chickpea

Author(s):  
M.D. Giri ◽  
C.P. Jaybhaye ◽  
D.G. Kanwade

Background: Moisture availability is the major abiotic limitation in rainfed areas of the country. Reduced germination, weak seedlings and poor plant population are the major causes of low productivity of chickpea in rain fed area. Inadequate soil moisture has adverse effect on seedling emergence, germination, vegetative growth as well as reproductive growth and seed yield.Methods: The experiments were conducted at the Agriculture Research Station (Dr. PDKV), Buldana, Maharashtra, India during 2016-17 to 2019-20 (four years). The experiment consisted of 12 treatments of seed priming replicated three times in randomized block design.Result: Based on the results of four years pooled analysis it was observed that seed priming with 0.5 and 1.0% potassium nitrate resulted in higher plant population and recorded higher grain yield of chickpea crop. Seed priming with potassium nitrate for four hours resulted in the higher gross monetary returns, net monetary returns and B:C ratio.

2011 ◽  
Vol 3 (4) ◽  
pp. 113-116 ◽  
Author(s):  
Hamdollah ESKANDARI ◽  
Kamyar KAZEMI

Early emergence and stand establishment of cowpea are considered to be the most important yield-contributing factors in rainfed areas. Laboratory tests and afield experiment were conducted in RCB design in 2011 at a research farm in Ramhormoz, Iran, to evaluate the effects of hydropriming (8, 12 and 16 hours duration) and halo priming (solutions of 1.5% KNO3 and 0.8% NaCl) on seedling vigor and field establishment of cowpea. Analysis of variance of laboratory data showed that hydropriming significantly improved germination rate, seed vigor index, and seedling dry weights. However, germination percentage for seeds primed with KNO3 and non-primed seeds were statistically similar, but higher than those for NaCl priming. Overall, hydropriming treatment was comparatively superior in the laboratory tests. Invigoration of cowpea seeds by hydropriming and NaCl priming resulted in higher seedling emergence and establishment in the field, compared to control and seed priming with KNO3. Seedling emergence rate was also enhanced by priming seeds with water, suggesting that hydropriming is a simple, low cost and environmentally friendly technique for improving seed and seedling vigor of cowpea.


2020 ◽  
Vol 7 (3) ◽  
pp. 634-637
Author(s):  
S. Jaffar Basha ◽  
◽  
V. Jayalakshmi ◽  
S. Khayum Ahammed ◽  
N. Kamakshi ◽  
...  

The growth and yield characters of chickpea varieties suitable for mechanical harvesting were evaluated through field experiment conducted for three consecutive years (2016__17 to 2018__19) during rabi season on vertisols under rainfed conditions at Regional Agricultural Research Station, Nandyal, Andhra Pradesh. The investigation was carried out in split plot design with three replications. Two plant geometries (30.0 × 10.0 cm and 22.5 × 10.0 cm) were assigned to main plots and six chickpea varieties (viz., GBM 2, Dheera, CSJ 515, HC 5, Phule G 08108 and BRC 1) were assigned to sub plots. Pooled analysis of experimental results indicated that significantly higher number of branches per plant (8.7) and number of pods per plant (31.1) and test weight (24.3 g) were observed under 30.0 × 10.0 cm when compared to 22.5 × 10.0 cm. Higher plant height (44.8 cm), height of lowest pod bearing branch (30.0 cm), lower days to 50 % flowering (42.1 days) and higher test weight (31.2 g) were observed in Dheera. Higher number of branches per plant (9.2) and number of pods per plant (34.2) were observed in GBM 2. Higher seed yield was observed in Phule G 08108 (1708 kg ha-1) which is followed by GBM 2 (1675 kg ha-1) Dheera (1569 kg ha-1) and BRC 1 (1493 kg ha-1). Higher harvest index (56.4%) was also observed in Phule G 08108. Chickpea varieties GBM2, Dheera and BRC1 were best suitable for mechanical harvesting and higher seed yield due to their excellent morphology.


2020 ◽  
pp. 20-23
Author(s):  
Panagiotis Kanatas ◽  
Vyronas Dellaportas ◽  
Ioanna Kakabouki ◽  
Panayiota Papastylianou

This study evaluated the effects of seed priming on germination and growth of A. millefolium by means of laboratory and greenhouse experiments conducted during 2018 in the Agricultural University of Athens. Treatments were GA3 (400 and 800 ppm), potassium nitrate (2% and 4%), polyethylene-glycol (soaking for 12 and 24h) besides an untreated control. Experiment in Petri dishes revealed that GA3 at 400 ppm, potassium nitrate (at concentration 2 and 4%) and PEG significantly increased germination percentage of A. millefolium, while germination rate was also significantly improved as a result of all seed priming techniques. In addition, due to the soil experiment, seedling emergence was significantly increased by GA3 at 400 ppm, potassium nitrate (at both concentrations) and PEG compared with the untreated seeds. Dry biomass of the young seedlings was significantly enhanced by means of GA3 (at 400 and 800 ppm), KNO3 (4%) and PEG for 24 h, indicating the potential effect of seed priming on first growth as well. The results of the present study revealed the significant positive effects of seed priming on A. millefolium seed germination, seedling emergence and early growth.


Author(s):  
M. N. Shivakumara ◽  
R. Krishna Murthy ◽  
G. S. Jagadeesha

A field experiment was conducted at Zonal Agricultural Research Station, Gandhi Krishi vigyana Kendra, Bengaluru during kharif-2017 and 2018 to study the influence of zeolite application on growth and yield of finger millet crop. The pooled analysis showed significantly higher plant height recorded in the treatment which received zeolite 50 kg ha-1 +125 per cent RDF (Recommended dose of fertilizer)  which was at par with the treatment which received zeolite 50 kg ha-1 +100 per cent RDF in 30, 60, 90 and at Harvest stage. The number of tillers per hill (3.44), total dry matter production (41.67 g hill-1), number of fingers per ear head (5.95), straw yield (36.07 q ha-1) and grain yield (48.00 q ha-1) was recorded in the treatment received zeolite 50 kg ha-1 +125 per cent RDF which was at par with the treatment which received zeolite 50 kg ha-1 +100 per cent RDF in pooled analysis.


2020 ◽  
pp. 1-11
Author(s):  
Fernanda Caro Beveridge ◽  
Alwyn Williams ◽  
Steve W. Adkins

Abstract Using seeds to restore natural ecosystems has a greater chance of success if the seeds used are ready to germinate given appropriate environmental conditions. For Australian native Poaceae species, seed quality and dormancy can impose constraints on restoration success. In this study, germination biology of three Australian native Poaceae species, such as Cymbopogon refractus, Capillipedium spicigerum and Bothriochloa bladhii, was investigated. The seeds were exposed to different germination-enhancing chemicals (GECs, namely smoke water (SW), potassium nitrate (KNO3) or a combination (SW + KNO3)) and treated with three different seed enhancement technologies (SETs, namely seed priming, seed coating or seed cookies) then sown into two contrasting soil types (sodosol or black vertisol). Laboratory germination percentages achieved were <50% for all species, limited by dormant seeds. Incorporating GECs together with seed priming or seed coating treatment significantly increased seedling emergence rates and promoted earlier emergence as compared to the untreated control. For C. refractus and C. spicigerum, priming and/or coating with KNO3 + SW had the highest cumulative emergence. For B. bladhii, total seedling emergence was the highest (36% in both soils) for primed seeds with KNO3. Seedling emergence from seed cookies was low in all three species (<15%). Generally, soil type did not influence emergence rates for either GEC or SET. Understanding the environmental requirements needed for seed germination, together with an appropriate pre-treatment before sowing, can speed up seedling emergence and increase total emergence when using native Poaceae species for seed-based restoration.


2016 ◽  
Vol 6 (1) ◽  
pp. 905-913
Author(s):  
Bahram Majd Nassiry ◽  
Neda Mohammadi

    One of the effects of reducing water content on soil is reduction of growth and development of seedlings and variation of field development. Seed priming technique has been known as a challenge to improve germination and seedling emergence under different environmental stresses. The objectives of this research were to evaluate the effects of osmo-priming on germination characteristics and changes of proline, protein and catalase activity of Ocimum basilicum seeds. Results showed that drought stress reduced the germination characteristics and drought stress in -8 bar was the critical stress.  Priming treatments were include KNO3, PEG and NaCl by 0, -4 and -8 bar concentrations. The seeds were primed with those materials for 8 and 16 hours. The highest germination characteristics were obtained from nitrate potassium in -8 bar for 16 hours priming. Therefore the best seed treatment under drought stress during germination was obtained from the osmo-primed with -8 bar nitrate potassium for 16 hours. The drought stress increased proline and catalase activity but reduced total protein. Priming treatment increases proline, total protein and catalase activity under drought and control conditions. It is concluded that priming results in improvement in germination components of Ocimum basilicum in drought stress conditions and increases the resistance to drought stress with improvement of proline, protein and catalase activity in germination phase.


2021 ◽  
pp. 1-9
Author(s):  
Javier Carrillo-Reche ◽  
Adrian C. Newton ◽  
Richard S. Quilliam

Abstract A low-cost technique named ‘on-farm’ seed priming is increasingly being recognized as an effective approach to maximize crop establishment. It consists of anaerobically soaking seeds in water before sowing resulting in rapid and uniform germination, and enhanced seedling vigour. The extent of these benefits depends on the soaking time. The current determination of optimal soaking time by germination assays and mini-plot trials is resource-intensive, as it is species/genotype-specific. This study aimed to determine the potential of the seed respiration rate (an indicator of metabolic activity) and seed morphological changes during barley priming as predictors of the priming benefits and, thus, facilitate the determination of optimal soaking times. A series of germination tests revealed that the germination rate is mostly attributable to the rapid hydration of embryo tissues, as the highest gains in the germination rate occurred before the resumption of respiration. Germination uniformity, however, was not significantly improved until seeds were primed for at least 8 h, that is, after a first respiration burst was initiated. The maximum seedling vigour was attained when the priming was stopped just before the beginning of the differentiation of embryonic axes (20 h) after which vigour began to decrease (‘over-priming’). The onset of embryonic axis elongation was preceded by a second respiration burst, which can be used as a marker for priming optimization. Thus, monitoring of seed respiration provides a rapid and inexpensive alternative to the current practice. The method could be carried out by agricultural institutions to provide recommended optimal soaking times for the common barley varieties within a specific region.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lawan Gana Ali ◽  
Rosimah Nulit ◽  
Mohd Hafiz Ibrahim ◽  
Christina Yong Seok Yien

AbstractRice is an important staple crop produced and consumed worldwide. However, poor seed emergence is one of the main impediments to obtaining higher yield of rice especially in hot and dry ecosystems of the world that are ravaged by drought. Therefore, this study was carried out to evaluate the effects of potassium nitrate (KNO3), salicylic acid (SA) and silicon dioxide (SiO2) priming in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44 rice under drought conditions. Rice seedlings primed with 2.5% and 5% KNO3, 3% and 3.5% SiO2, and 1 mM and 2.5 mM SA were subjected to three drought levels of low, moderate and severe under the greenhouse. Seed emergence, seedling growth, biochemical attributes and antioxidant activities were thereafter evaluated. Seed priming experiments were laid in a completely randomized design with five replicates per treatment. The results found that rice seedlings responded differently to different priming treatments. However, all primed rice seedlings had significantly (P ≤ 0.05) improved emergence percentage (72–92%), seedling growth, seedling vigor, seedling fresh and dry biomass and shorter emergence time compared with controls. Likewise, total soluble protein content, activities of catalase, ascorbate peroxidase and superoxide dismutase, carbohydrate, soluble sugar and total chlorophyll contents of rice seedlings were increased by more than two-folds by seed priming compared with control. Salicylic acid showed less effect in increasing emergence, seedling growth, antioxidant activities and biochemical attributes of rice. Thus, this study established that seed priming with KNO3 (2.5% and 5%) and SiO2 (3% and 3.5%) were more effective in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44. Thus, priming of FARO44 rice with this chemical is recommended for fast emergence, seedling growth and drought resistance in dry ecosystems.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 849
Author(s):  
Buta Singh Dhillon ◽  
Virender Kumar ◽  
Pardeep Sagwal ◽  
Navjyot Kaur ◽  
Gurjit Singh Mangat ◽  
...  

Poor early growth and uneven crop establishment are reported as the major bottlenecks in wide-scale adoption and optimal yield realization of dry direct-seeded rice (DSR). Seed priming can potentially help overcome these problems in DSR. Therefore, laboratory and field studies were conducted at Punjab Agricultural University, Ludhiana, India, during kharif/wet-season 2018 and 2019 to evaluate the effect of different priming techniques on germination, establishment, growth, and grain yield of rice under DSR conditions. The following priming treatments were evaluated: dry non-primed seed (control), hydropriming with distilled water, halopriming with 2.0% potassium nitrate, hormopriming with 50 ppm gibberellic acid (GA3), and osmopriming with polyethylene glycol (PEG)(−0.6 MPa), each with 12 and 24 h priming duration. In 2019, priming treatments were tested under two DSR establishment methods—conventional DSR (sowing in dry soil followed by irrigation) and soil mulch DSR (locally known as vattar DSR) (sowing in moist soil after pre-sowing irrigation), whereas in 2018, priming treatments were evaluated under conventional DSR only. In both years, halopriming and hormopriming resulted in a 7–11% increase in rice yields compared to non-primed dry seed (control). Osmopriming resulted in a 4% yield increase compared to control in 2018 but not in 2019. The higher yields in halopriming and hormopriming were attributed to higher and rapid germination/crop emergence, better root growth, and improvement in yield attributes. Priming effect on crop emergence, growth, and yield did not differ by DSR establishment methods and duration of priming. Conventional DSR and soil mulch DSR did not differ in grain yield, whereas they differed in crop emergence, growth, and yield attributes. These results suggest that halopriming with 2.0% potassium nitrate and hormopriming with 50 ppm GA3 has good potential to improve crop establishment and yield of rice in both conventional and soil mulch DSR systems.


2008 ◽  
Vol 48 (3) ◽  
pp. 296 ◽  
Author(s):  
C. J. Birch ◽  
G. McLean ◽  
A. Sawers

This paper reports on the use of APSIM – Maize for retrospective analysis of performance of a high input, high yielding maize crop and analysis of predicted performance of maize grown with high inputs over the long-term (>100 years) for specified scenarios of environmental conditions (temperature and radiation) and agronomic inputs (sowing date, plant population, nitrogen fertiliser and irrigation) at Boort, Victoria, Australia. It uses a high yielding (17 400 kg/ha dry grain, 20 500 kg/ha at 15% water) commercial crop grown in 2004–05 as the basis of the study. Yield for the agronomic and environmental conditions of 2004–05 was predicted accurately, giving confidence that the model could be used for the detailed analyses undertaken. The analysis showed that the yield achieved was close to that possible with the conditions and agronomic inputs of 2004–05. Sowing dates during 21 September to 26 October had little effect on predicted yield, except when combined with reduced temperature. Single year and long-term analyses concluded that a higher plant population (11 plants/m2) is needed to optimise yield, but that slightly lower N and irrigation inputs are appropriate for the plant population used commercially (8.4 plants/m2). Also, compared with changes in agronomic inputs increases in temperature and/or radiation had relatively minor effects, except that reduced temperature reduces predicted yield substantially. This study provides an approach for the use of models for both retrospective analysis of crop performance and assessment of long-term variability of crop yield under a wide range of agronomic and environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document