scholarly journals Comparative analysis of morpho-physiological features of Triticum vulgare sprouts after exposure to metal nanoparticles

Author(s):  
A. M. Korotkova ◽  
O. V. Kvan ◽  
L. A. Bykova ◽  
O. S. Kudryavtseva ◽  
T. S. Videneeva ◽  
...  

In this article violation of the mineral metabolism of plants as a result of secondary contamination with heavy metals (HM), which at high concentrations have a toxic effect on a wide variety of physiological processes, occupies a central place in the problem of the resistance of plant organisms to unfavorable environmental factors. Nanoparticles based on iron, copper and nickel are of considerable interest. The study of the mechanisms of plant adaptation to structurally different nanometals (NM) from the position of changing a number of physiological and biochemical parameters is relevant for a more complete understanding of the adaptive capabilities of organisms in conditions of technogenic nanomaterials. Analysis of the content of photosynthetic pigments allowed the formation of consistent ideas about the selectivity of the effect of nanometals on the components of the pigment system of seedlings, depending both on the composition of the metal and on its concentration. The obtained results serve as additional evidence of the existence of selectivity in the activation of a particular reaction of the plant's antioxidant system, determined by the nature of the nanomaterial. However, a change in the level of ROS in the presence of Ni? and Cu? can be attributed to the non-specific response of plants, since similar changes are characteristic of a variety of stresses of plants and in most cases require further research. In this aspect the main "target" of the action of LF metals was the root system of plants, which determined the interest in identifying mechanisms of phytotoxicity with an emphasis on the study of cell damage in this part of plants.

Author(s):  
Nael Mohammed Sarheed ◽  
Osamah Faisal Kokas ◽  
Doaa Abd Alabas Muhammed Ridh

The plant of castor is widely spread in the Iraqi land, and characterized with containing ricin toxin, which has a very serious effects, and because the seeds of this plant scattered in the agricultural soil and rivers water, which increases the exposure of humans and animals to these beans. Objective: This experiment was designed to study the effect of high concentration of castor bean powder in some physiological and biochemical parameters and changes in some tissues of the body, as well as trying to use doxycycline to reduce the effects of ingestion of these seeds. Materials and Methods: In the experiment, 24 local rabbits were raised and fed in the Animal House of the Faculty of Medicine / Al-Muthanna University, then divided into four groups and treated for three weeks (21 days), Control group: treated with normal saline solution (0.9) orally throughout the experiment, G1: was treated orally with a concentration of 25 mg / kg of castor bean powder daily during the experiment, G2 : orally treated 25 mg / kg of castor bean and 25 mg / kg of doxycycline, G3: orally treated 25 mg / kg of castor powder with 50 mg / kg of doxycycline daily throughout the trial period. Results: The results of the experiment showed significant changes (P less than 0.05) in all physiological and biochemical blood tests when compared with control group. There was a significant decrease in PCV, Hb, RBC, T.protein and body weights, while demonstrated a significant increase in WBC, Urea, Creatinine, ALT, AST and ALP, with distortions in liver and kidney of animals that treated with Castor beans. In contrast, the treatment with doxycycline and caster beans showed significant improvement reflected by a normal proportion in physiological tests and biochemical tests with improvement in the tissues when compared to control group. Conclusions: It can be concluded from this study that castor bean has high toxic and pathogenic effects that may be dangerous to the life of the organism. Therefore, it is advisable to be cautious of these pills and avoid exposure to them, also recommended to take high concentrations of doxycycline treatment when infected with castor bean poisoning.


Vestnik ◽  
2021 ◽  
pp. 208-214
Author(s):  
Б.К. Кайрат ◽  
С.Т. Тулеуханов ◽  
В.П. Зинченко

Ионы Са являются основным мессенджером в регуляции физиологических функций клеток. Внутриклеточном пространстве ионы Ca могут свободно состоянии диффундироваться в различных частях цитоплазмы, в то же время значительное количество Ca в связанном виде накапливается в различных внутриклеточных депо или в составе кальций-связывающих белков. Регуляция физиологических процессов с ионами внутриклеточного Са происходит в диапазоне концентраций 10 М, тогда как концентрация Са во внеклеточном пространстве выше и составляет 10 М, для поддержании градиента концентраций в клетках имеются важные Са транспортирующие системы плазматической мембраны, эндоплазматического ретикулума и митохондрий. В нейронах функционируют внутриклеточные ферменты и белки плазматической мембраны для поддержания Са-гомеостаза и реализации механизмов внутриклеточной сигнализации для обеспечения жизнедеятельности в выживании клеток. Нарушение или гиперактивация одного или нескольких механизмов кальциевой сигнализации может привести к повреждению и гибели нейронов в случае отсутствия компенсаторных механизмов. Ca ions are a key messenger for the regulation of most of the physiological functions of cells. Inside the cell, Ca ions can freely diffuse in various parts of the cytoplasm, but a significant amount of Ca is also bound in various intracellular depots or in the form of calcium-binding proteins. The regulation of physiological processes by intracellular Ca ions occurs in the concentration range of 10 M, and the concentration of Ca in the extracellular space is higher and is 10 M, and to maintain this concentration gradient, cells have Ca-transporting systems of the plasma membrane, endoplasmic reticulum and mitochondria. In neurons, a large number of intracellular enzymes and plasma membrane proteins function to maintain Ca-homeostasis and implement intracellular signaling mechanisms to ensure vital activity in the survival of cells. Violation or hyperactivation of one or more mechanisms of calcium signaling can lead to cell damage and death in the absence of compensatory mechanisms.


2001 ◽  
Vol 29 (2) ◽  
pp. 163-177 ◽  
Author(s):  
Emil Rudolf ◽  
Jan Peychl ◽  
Miroslav Červinka

Many human activities, particularly industrial ones, result in an ever-growing production of toxic waste materials. The dynamics of the toxic effects of chromium acetate hydroxide, which is found in high concentrations in a waste sediment produced in the Czech Republic, were assessed by using a battery of in vitro tests carried out on two cell lines: L-929 (mouse fibroblasts) and Hep 2 (human laryngeal cells). Various markers of cell damage were assessed by phase-contrast, video and fluorescence microscopy, fluorometry, and DNA analysis. Chromium acetate hydroxide, over a concentration range of 1–0.02mol/l induced immediate cell death by fixation, whereas, at 0.002mol/l, the treated cells died in a much slower, more discrete manner. All the detected markers of cell damage, whether immediate or slow, clearly demonstrated that the cells died by necrosis. On the other hand, test concentration of 0.001mol/l appeared to constitute a threshold at which no pathological changes of Hep 2 cells were observed over 96 hours. We conclude that chromium acetate hydroxide has a high toxic potential in vitro, which should be considered when studying the toxicity of waste materials containing it.


2020 ◽  
Vol 8 (Spl-2-AABAS) ◽  
pp. S298-S302
Author(s):  
Vladimir Nikolaevich Vorob’ev ◽  
◽  
Sergei Fedorovich Kotov ◽  
Vera Vladimirovna Nikolenko ◽  
Denis Vladimirovich Tishin ◽  
...  

The current study was carried out to study the influence of light and heavy lanthanides on the physiological process of Crimean-Sagyz/ Krim-saghyz (dandelion - Taraxacum hybernum). Lanthanide belongs to the group of light or heavy; infiltration of dandelion (Crimean saghyz) seeds with light and heavy lanthanides solutions increased the germination energy by 26%. The differences in the influence of light (cerium) and heavy (lutetium) were manifested in the quantum efficiency change of the photosystem 2 (PS II). Treatment of leaves with high concentrations (100 µM) led to a decrease of Y (II), moreover, under the influence of light lanthanide, the decrease was greater by 21%. It is assumed that the effect of the used lanthanides on the dandelion photosynthetic apparatus is multidirectional. Cerium influenced the PS II antenna complex, and lutetium influenced the reaction centers. A 10-fold decrease in the concentration did not change the nature of cerium action, except that Y (II) was restored already on the second day after treatment. The effect of lutetium became noticeable only by the 8th day after treatment when Y (II) became higher than that of untreated plants. Thus, the results of the study suggested that in dandelion leaves, lanthanides with a concentration of 10 µM increased the quantum efficiency of PS II in contrast to cerium.


Author(s):  
B. L. Liu ◽  
J. J. McGrath

Osteoblast (OB)-seeded hydroxyapatite (HA) scaffold cortical bone substitutes are being developed at Michigan State University. Preservation methods need to be developed to preserve such living products to ensure a steady supply for transplantation. Theoretically vitrification is an attractive method for the cryopreservation of tissue-engineered bone because it can eliminate the destructive effect of ice formation [1]. However, relatively fast cooling and warming rates are required to avoid damage associated with ice crystallization and relatively high concentrations of cryoprotective agents (CPAs) are required to achieve a glassy (vitrified) state. These rapid rates of temperature change may not be possible as tissue-engineered structures become larger. In addition to cell damage, rapid rates may also cause destructive thermo mechanical damage to the scaffold itself. Slower rates can be used to achieve the vitrified state but this requires higher CPA concentrations, which are more toxic. As a means of studying the interactive determinants of an optimal vitrification process for osteoblasts, we have undertaken thermal analysis of a variety of vitrification solutions of interest using differential scanning calorimetry (DSC) to determine the critical cooling and warming rates. The toxicity dynamics and tendency for the scaffolds to be damaged mechanically by the vitrification process are also examined. Glycerol and dimethyl sulfoxide at a concentration of 40% were studied with and without an ice blocker. Two vitrification “cocktails” (VS55 and VEG) over a concentration range of 80% to 100% were studied with and without an ice blocker. On the basis of these studies 95% VEG with ice blocker was least toxic and yielded the highest recovery (∼90%) for OBs vitrified in liquid suspension. Vitrification does not seem to be detrimental to the bending strength of high density (low porosity) HA scaffolds, but lower density HA scaffolds break more easily after vitrification in some instances.


2016 ◽  
Vol 56 (3) ◽  
pp. R73-R97 ◽  
Author(s):  
Inna Astapova

Thyroid hormone (TH) controls a wide range of physiological processes through TH receptor (TR) isoforms. Classically, TRs are proposed to function as tri-iodothyronine (T3)-dependent transcription factors: on positively regulated target genes, unliganded TRs mediate transcriptional repression through recruitment of co-repressor complexes, while T3binding leads to dismissal of co-repressors and recruitment of co-activators to activate transcription. Co-repressors and co-activators were proposed to play opposite roles in the regulation of negative T3target genes and hypothalamic–pituitary–thyroid axis, but exact mechanisms of the negative regulation by TH have remained elusive. Important insights into the roles of co-repressors and co-activators in different physiological processes have been obtained using animal models with disrupted co-regulator function. At the same time, recent studies interrogating genome-wide TR binding have generated compelling new data regarding effects of T3, local chromatin structure, and specific response element configuration on TR recruitment and function leading to the proposal of new models of transcriptional regulation by TRs. This review discusses data obtained in various mouse models with manipulated function of nuclear receptor co-repressor (NCoR or NCOR1) and silencing mediator of retinoic acid receptor and thyroid hormone receptor (SMRT or NCOR2), and family of steroid receptor co-activators (SRCs also known as NCOAs) in the context of TH action, as well as insights into the function of co-regulators that may emerge from the genome-wide TR recruitment analysis.


Author(s):  
Joanna Stachowska-Pietka ◽  
Jacek Waniewski ◽  
Bengt Lindholm

The principles of peritoneal dialysis are based on the physiological processes and their driving forces which permit the exchange of water (by ultrafiltration and fluid absorption) and solutes (by diffusion and convective transport) between the peritoneal microvasculature and the dialysate. In peritoneal dialysis, the peritoneal transport system—mesenchymal cells, interstitium, microvasculature, and lymphatics—is repeatedly exposed to high concentrations of an osmotic agent, and a volume load, leading to increased intraperitoneal hydrostatic and osmotic pressure. This results in immediate as well as long-term structural and functional changes of the peritoneal transport system. Clinical tests supplemented with mathematical modelling have been developed to monitor the quantitative characteristics of the peritoneal transport system, allowing detection and diagnosis of various problems and guidance when predicting consequences of changes in prescription.


2017 ◽  
Vol 35 (3) ◽  
pp. 364-370 ◽  
Author(s):  
Juliane M Henschel ◽  
Juliano TV Resende ◽  
Patrícia C Giloni-Lima ◽  
André R Zeist ◽  
Renato B Lima Filho ◽  
...  

ABSTRACT Strawberry is a crop of great economic and social importance. Its fruits are appreciated both for their flavor and nutraceutical potential. Some studies confirm that light quality influences plant physiology. Thus, the aim of this study was to investigate if changes in light spectrum, provided by low tunnels, can improve vegetative traits, as well as, production and fruit quality of strawberry. The authors used six tunnel covers (red, yellow, blue, green, transparent and opaque and one control, without cover), and two cultivars: a short photoperiod cultivar (Camarosa) and a neutral photoperiod cultivar (Albion). Experiment was evaluated in two seasons: production and plant development first; and then, post-harvest quality. Overall, Camarosa showed higher vegetative growth, lower production, and better fruit quality than Albion. Due to the complexity of physiological and biochemical responses, each trait evaluated showed a specific response to light changes. The red, blue, yellow and green covers did not show any significant improvement comparing with transparent and opaque covers. Thus, the authors suggest the use of the latter ones which have already been used commercially.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 828 ◽  
Author(s):  
Ilaria Frau ◽  
Stephen Wylie ◽  
Patrick Byrne ◽  
Jeff Cullen ◽  
Olga Korostynska ◽  
...  

Pollutants affect water worldwide and consequently present a risk to both the environment and to human health. Cu is an essential element for many organisms, but becomes toxic at relatively high concentrations. Current laboratory-based methods are not able to monitor water quality continuously, as they require laborious sampling and offline monitoring. A potential method that is capable to addressing this problem, guaranteeing the continuous monitoring of water resources, is the integration of microwave spectroscopy with functionalised electromagnetic (f-EM) sensors. The feasibility of using this combined method for achieving a more specific response toward low concentrations of Cu has been demonstrated.


1979 ◽  
Vol 178 (1) ◽  
pp. 201-208 ◽  
Author(s):  
R Coleman ◽  
S Iqbal ◽  
P P Godfrey ◽  
D Billington

The total content and profile of bile salts and phospholipids are reported for several mammalian biles. Rabbit and guinea-pig biles are characterized by high proportions of conjugated dihydroxy bile salts with respect to trihydroxy bile salts, but contain relatively little phospholipid. Both rabbit and guinea-pig biles exhibit little evidence of hepatic cell damage, even though they are able to cause membrane damage (as evidenced by lysis of human erythrocytes) at low (2–3 mM) concentrations of bile salts; this lytic behaviour is also a property of their predominant bile salts. Addition of phosphatidylcholine to the bile or bile salt is able to decrease the lytic behaviour. Perhaps the most significant observation is that these biles, and their predominant bile salts, are dramatically less lytic towards sheep erythrocytes, indicating that some factor(s) in membrane composition and structure may partly explain the resistance of membranes of the biliary tract to the presence of high concentrations of potentially membrane-damaging bile salts.


Sign in / Sign up

Export Citation Format

Share Document