scholarly journals The Regulation Effect of Crude Polysaccharides from Cordyceps Militaris on Obesity Control and Gut Microbiota Community via High-Fat Diet-Fed Mice Model

Author(s):  
Minglei Yu ◽  
Nan Hui ◽  
Kashif Hayat ◽  
Xijia Yang ◽  
Shaohua Chu ◽  
...  

Administration of crude polysaccharides extract from natural product is a promising gut microbiota-targeted approach to preventing obesity and associated metabolic disorders. Dietary restrictions can change the type and number of gut bacteria, which is an important factor in delaying the onset and burden of diseases. This study aimed to investigate the effects of high-yield crude polysaccharides from Cordyceps militaris (CMP) on high-fat diet (HFD) mice model and the gut microbiota community assembly, and to identify whether selenium (Se) addition would improve CMP action mode during cultivation. We found that the CMP treatment ameliorated adipose and liver pathologic morphology and fat accumulation in obese mice, while, SeCMP intervention was not superior than CMP in body mass gain, but notably decreasing serum triglyceride level increased by HFD. The upregulated expression of gene Cyp7a1 in liver and protein UCP1 in brown adipose tissue (BAT) preliminary indicated that the effect might relate to bile acids (BAs) metabolism pathway and thermogenesis. In addition, CMP showed a drastic decrease in the gut microbes which positively correlated with dyslipidemia parameters. Our result reveals the potential of CMP to be used as functional food in the prevention of diet-induced adipose and liver steatosis, so does SeCMP has outstanding capacity of improving dyslipidemia.

2020 ◽  
Vol 8 (6) ◽  
pp. 860 ◽  
Author(s):  
Yinzhao Zhong ◽  
Bo Song ◽  
Changbing Zheng ◽  
Shiyu Zhang ◽  
Zhaoming Yan ◽  
...  

Here, we investigated the roles and mechanisms of flavonoids from mulberry leaves (FML) on lipid metabolism in high fat diet (HFD)-fed mice. ICR mice were fed either a control diet (Con) or HFD with or without FML (240 mg/kg/day) by oral gavage for six weeks. FML administration improved lipid accumulation, alleviated liver steatosis and the whitening of brown adipose tissue, and improved gut microbiota composition in HFD-fed mice. Microbiota transplantation from FML-treated mice alleviated HFD-induced lipid metabolic disorders. Moreover, FML administration restored the production of acetic acid in HFD-fed mice. Correlation analysis identified a significant correlation between the relative abundances of Bacteroidetes and the production of acetic acid, and between the production of acetic acid and the weight of selected adipose tissues. Overall, our results demonstrated that in HFD-fed mice, the lipid metabolism improvement induced by FML administration might be mediated by gut microbiota, especially Bacteroidetes-triggered acetic acid production.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2252
Author(s):  
Minglei Yu ◽  
Jin Yue ◽  
Nan Hui ◽  
Yuee Zhi ◽  
Kashif Hayat ◽  
...  

Supplementation of polysaccharides is a promising gut microbiota-targeted therapeutic method for obesity and metabolic diseases. Biological activities of Cordyceps militaris polysaccharides have been well reported, but the effect of selenium (Se)-rich C. militaris polysaccharides (SeCMP) on obesity and associated metabolic disorder and gut microbiota composition has been rarely studied. This study aimed to investigate the anti-obesity and gut microbiota modulatory effect of crude polysaccharides separated from Se-rich C. militaris on a high-fat diet (HFD)-fed C57BL/6J mice model. Mice were treated with a normal diet (CHOW), HFD alone, HFD plus C. militaris polysaccharides (CMP), or low/medium/high dosage of SeCMP for 8 weeks. Body weight, fat content, serum lipid, appetite hormone, lipid gene expression, inflammation cytokines, thermogenic protein, short-chain fatty acids (SCFAs), and gut microbiota structure of the mice were determined. Compared with HFD-fed mice, the serum triglyceride and low-density lipoprotein cholesterol (LDL-C) in the SeCMP-200 group were decreased by 51.5% and 44.1%, respectively. Furthermore, serum lipopolysaccharide-binding proteins (LBP), adiponectin level, and pro-inflammation gene expression in the colon and subcutaneous fat were inhibited, whereas anti-inflammation gene expression was improved, reflecting SeCMP-200 might mitigate obese-induced inflammation. Meanwhile, SeCMP-200 promoted satiety and thermogenesis of obese mice. It also significantly decreased gut bacteria, such as Dorea, Lactobacillus, Clostridium, Ruminococcus, that negatively correlated with obesity traits and increased mucosal beneficial bacteria Akkermansia. There was no significant difference between CMP and SeCMP-100 groups. Our results revealed a high dose of SeCMP could prevent HFD-induced dyslipidemia and gut microbiota dysbiosis and was potential to be used as functional foods.


2014 ◽  
Vol 221 (3) ◽  
pp. 381-390 ◽  
Author(s):  
Gustavo W Fernandes ◽  
Cintia B Ueta ◽  
Tatiane L Fonseca ◽  
Cecilia H A Gouveia ◽  
Carmen L Lancellotti ◽  
...  

Three types of beta adrenergic receptors (ARβ1–3) mediate the sympathetic activation of brown adipose tissue (BAT), the key thermogenic site for mice which is also present in adult humans. In this study, we evaluated adaptive thermogenesis and metabolic profile of a mouse withArβ2knockout (ARβ2KO). At room temperature, ARβ2KO mice have normal core temperature and, upon acute cold exposure (4 °C for 4 h), ARβ2KO mice accelerate energy expenditure normally and attempt to maintain body temperature. ARβ2KO mice also exhibited normal interscapular BAT thermal profiles during a 30-min infusion of norepinephrine or dobutamine, possibly due to marked elevation of interscapular BAT (iBAT) and ofArβ1, andArβ3mRNA levels. In addition, ARβ2KO mice exhibit similar body weight, adiposity, fasting plasma glucose, cholesterol, and triglycerides when compared with WT controls, but exhibit marked fasting hyperinsulinemia and elevation in hepaticPepck(Pck1) mRNA levels. The animals were fed a high-fat diet (40% fat) for 6 weeks, ARβ2KO mice doubled their caloric intake, accelerated energy expenditure, and inducedUcp1expression in a manner similar to WT controls, exhibiting a similar body weight gain and increase in the size of white adipocytes to the WT controls. However, ARβ2KO mice maintain fasting hyperglycemia as compared with WT controls despite very elevated insulin levels, but similar degrees of liver steatosis and hyperlipidemia. In conclusion, inactivation of the ARβ2KO pathway preserves cold- and diet-induced adaptive thermogenesis but disrupts glucose homeostasis possibly by accelerating hepatic glucose production and insulin secretion. Feeding on a high-fat diet worsens the metabolic imbalance, with significant fasting hyperglycemia but similar liver structure and lipid profile to the WT controls.


2021 ◽  
Author(s):  
Haizhao Song ◽  
Xinchun Shen ◽  
Yang Zhou ◽  
Xiaodong Zheng

Supplementation of black rice anthocyanins (BRAN) alleviated high fat diet-induced obesity, insulin resistance and hepatic steatosis by improvement of lipid metabolism and modification of the gut microbiota.


2021 ◽  
Vol 141 (5) ◽  
pp. 95-103
Author(s):  
Pham Thuy Phuong ◽  
Pham Thi Van Anh ◽  
Dang Thi Thu Hien ◽  
Nguyen Trong Thong ◽  
Pham Quoc Binh

This study evaluated the effects of Hamo NK hard capsule on athresclerosis using experimental atherosclerosis model. NewZealand White rabbits were fed a high-fat diet (HFD) containing cholesterol and peanut oil. The animals received oral administration of HFD and Hamo NK hard capsule at two doses of 0.126 and 0.378 g/kg bw/day for 8 consecutive weeks. Blood samples were collected for analyis of biochemical parameters at before treatment, week 4 and week 8. Histopathology assessments of the aortic artery and liver were carried out at the end of the experiment. Hamo NK was effective in reducing serum triglyceride level after 8 weeks of the experiment. In addition, Hamo NK at two doses of 0.126 g/kg b.w and 0.378 g/kg b.w for 8 consecutive weeks did not affect the cholesterol, LDL-C and HDL-C concentrations induced by a HFD. Hamo NK at the dose of 0.126 g/kg bw/day was not only able to decrease significant aortic surface lesions but also capable of managing atherosclerosis plaques formation in aorta; whereas theses activities were not notiaceable at the dose of 0.378 g/kg b.w.


2019 ◽  
Author(s):  
Lulu Deng ◽  
Zihao Ou ◽  
Dongquan Huang ◽  
Chong Li ◽  
Zhi Lu ◽  
...  

Abstract Background The study aimed to investigate the differences of different Akkermansia muciniphila (A.muciniphila) genotypes on metabolic protective effects in mice with high-fat diet and explore possible mechanisms. Methods Male C57BL/6 mice were randomly divided into 6 groups, including high-fat diet (HFD)+ A.muciniphila I/II/PBS group, normal chow diet (NCD)+A.muciniphila I/ II /PBS group, respectively. Dietary intervention and A.muciniphila gavage were performed simultaneously. Blood glucose and lipid metabolism, brown adipose morphology and activities, and intestinal barrier function were examined after the mice were sacrificed. Results A.muciniphila gavage improved the impaired glucose tolerance, hyperlipidemia and liver steatosis in HFD mice, and that A.muciniphila II was not as effective as A.muciniphila I. This phenomenon might be because A.muciniphila I intervention significantly inhibited brown adipose tissue whitening and inflammation induced by HFD, by repairing the intestinal barrier and relieving endotoxemia. A.muciniphila II did not display the same results as A.muciniphila I in HFD mice, but had stronger effects in the NCD mice. Conclusions This study mainly reveals the distinct functions of different A.muciniphila genotypes on diet-induced obesity, suggesting that different A.muciniphila genotypes may play inequitable roles in pathological conditions through distinct action pathways.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Wang Li ◽  
Yan Li ◽  
Qing Wang ◽  
Yi Yang

Lycium barbarumpolysaccharide (LBP) is well known in traditional Chinese herbal medicine that, has beneficial effects. Previous study reported that LBP reduced blood glucose and serum lipids. However, the underlying LBP-regulating mechanisms remain largely unknown. The main purpose of this study was to investigate whether LBP prevented fatty liver through activation of adenosine monophosphate-activated protein kinase (AMPK) and suppression of sterol regulatory element-binding protein-1c (SREBP-1c). Male C57BL/6J mice were fed a low-fat diet, high-fat diet, or 100 mg/kg LBP-treatment diet for 24 weeks. HepG2 cells were treated with LBP in the presence of palmitic acid. In our study, LBP can improve body compositions and lipid metabolic profiles in high-fat diet-fed mice. Oil Red O stainingin vivoandin vitroshowed that LBP significantly reduced hepatic intracellular triacylglycerol accumulation. H&E staining also showed that LBP can attenuate liver steatosis. Hepatic genes expression profiles demonstrated that LBP can activate the phosphorylation of AMPK, suppress nuclear expression of SREBP-1c, and decrease protein and mRNA expression of lipogenic genesin vivoorin vitro. Moreover, LBP significantly elevated uncoupling protein-1 (UCP1) and peroxisome proliferator-activated receptor-γcoactivator-1α(PGC-1α) expression of brown adipose tissue. In summary, LBP possesses a potential novel treatment in preventing diet-induced fatty liver.


2021 ◽  
Vol 8 ◽  
Author(s):  
Gil Zandani ◽  
Sarit Anavi-Cohen ◽  
Nina Tsybina-Shimshilashvili ◽  
Noa Sela ◽  
Abraham Nyska ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is linked to obesity, type 2 diabetes, hyperlipidemia, and gut dysbiosis. Gut microbiota profoundly affects the host energy homeostasis, which, in turn, is affected by a high-fat diet (HFD) through the liver-gut axis, among others. Broccoli contains beneficial bioactive compounds and may protect against several diseases. This study aimed to determine the effects of broccoli supplementation to an HFD on metabolic parameters and gut microbiome in mice. Male (7–8 weeks old) C57BL/J6 mice were divided into four groups: normal diet (ND), high-fat diet (HFD), high-fat diet+10% broccoli florets (HFD + F), and high-fat diet + 10% broccoli stalks (HFD + S). Liver histology and serum biochemical factors were evaluated. Alterations in protein and gene expression of the key players in lipid and carbohydrate metabolism as well as in gut microbiota alterations were also investigated. Broccoli florets addition to the HFD significantly reduced serum insulin levels, HOMA-IR index, and upregulated adiponectin receptor expression. Conversely, no significant difference was found in the group supplemented with broccoli stalks. Both broccoli stalks and florets did not affect fat accumulation, carbohydrate, or lipid metabolism-related parameters. Modifications in diversity and in microbial structure of proteobacteria strains, Akermansia muciniphila and Mucispirillum schaedleri were observed in the broccoli-supplemented HFD-fed mice. The present study suggests that dietary broccoli alters parameters related to insulin sensitivity and modulates the intestinal environment. More studies are needed to confirm the results of this study and to investigate the mechanisms underlying these beneficial effects.


2021 ◽  
Author(s):  
Xiaoying Zhang ◽  
Guodong Yang

Abstract Background: The aim of this study was to investigate the therapeutic effect and the underlying mechanism of resveratrol in high fat diet (HFD) and hyperlipidemia AP (HTG-AP) mice model. Methods: Following successful establishment of the HFD and HTG-AP mice model, resveratrol was administrated. 16sRNA sequencing of gut microbiota in colonic fecal, the LPS, MCP-1, TNF-α, and IL-6 expressions in serum, and MCP-1 expression of the pancreatic tissues were measured in HFD model. The MDA, SOD, T-AOC, TNF-α, and MCP-1 expressions; the NF‑κB proinflammatory signaling pathway‑related proteins in pancreatic tissues were determined. Histopathological examination was evaluated in both models.Results: Resveratrol effectively inhibited pancreatic pathological injury in both models. It reduced the MDA, SOD, T-AOC, TNF-α, and MCP-1 expressions and changed composition of gut microbiota in feces compared with the HFD model. Resveratrol also reduced oxidative stress by decreasing the level of MDA and increasing the levels of SOD and T-AOC. TNF-α and MCP-1 were decreased following the administration of resveratrol. Furthermore, resveratrol suppressed the NF‑κB proinflammatory signaling pathway in pancreatic tissues.Conclusions: The study suggested that resveratrol had therapeutic effect on HFD and HTG-AP mice model by regulating the gut microbiota, promoting antioxidant capacity and inhibiting proinflammatory cytokines via the NF‑κB inflammatory pathway. The results can provide evidence that resveratrol might be regarded as a promising therapeutic agent for HTG-AP.


Sign in / Sign up

Export Citation Format

Share Document