scholarly journals Nanoparticles for Cancer Therapy: Current Progress and Challenges

Author(s):  
Shreelaxmi Gavas ◽  
Sameer Quazi ◽  
Tomasz Karpiński

Cancer is one of the leading causes of death and morbidity with a complex pathophysiology. Traditional cancer therapies include chemotherapy, radiation therapy, targeted therapy, and immunotherapy. However, limitations such as lack of specificity, cytotoxicity, and multi-drug resistance pose a substantial challenge for favorable cancer treatment. The advent of nanotechnology has revolutionized the arena of cancer diagnosis and treatment. Nanoparticles (1-100nm) can be used in the treatment of cancer owing to their specific advantages such as biocompatibility, reduced toxicity, more excellent stability, enhanced permeability and retention effect, and precise targeting. Nanoparticles are classified into several main categories. The nanoparticle drug delivery system is particular and utilizes tumor and tumor environment characteristics. Nanoparticles not only solve the limitations of conventional cancer treatment but also overcome multidrug resistance. Additionally, as new multidrug resistance mechanisms are unraveled and studied, nanoparticles are being investigated more vigorously. Various therapeutic implications of nano-formulations have created brand new perspectives for cancer treatment. However, a majority of the research is limited to in vivo and in vitro studies, and the number of nano-drugs that are approved has not much amplified over the years. In this review, we discuss numerous types of nanoparticles, targeting mechanisms along with approved nanotherapeutics for oncological implications in cancer treatment. Further, we also summarize the current perspective, advantages, and challenges in clinical translation.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shreelaxmi Gavas ◽  
Sameer Quazi ◽  
Tomasz M. Karpiński

AbstractCancer is one of the leading causes of death and morbidity with a complex pathophysiology. Traditional cancer therapies include chemotherapy, radiation therapy, targeted therapy, and immunotherapy. However, limitations such as lack of specificity, cytotoxicity, and multi-drug resistance pose a substantial challenge for favorable cancer treatment. The advent of nanotechnology has revolutionized the arena of cancer diagnosis and treatment. Nanoparticles (1–100 nm) can be used to treat cancer due to their specific advantages such as biocompatibility, reduced toxicity, more excellent stability, enhanced permeability and retention effect, and precise targeting. Nanoparticles are classified into several main categories. The nanoparticle drug delivery system is particular and utilizes tumor and tumor environment characteristics. Nanoparticles not only solve the limitations of conventional cancer treatment but also overcome multidrug resistance. Additionally, as new multidrug resistance mechanisms are unraveled and studied, nanoparticles are being investigated more vigorously. Various therapeutic implications of nanoformulations have created brand new perspectives for cancer treatment. However, most of the research is limited to in vivo and in vitro studies, and the number of approved nanodrugs has not much amplified over the years. This review discusses numerous types of nanoparticles, targeting mechanisms, and approved nanotherapeutics for oncological implications in cancer treatment. Further, we also summarize the current perspective, advantages, and challenges in clinical translation.


2021 ◽  
Vol 12 ◽  
Author(s):  
José Pedro Gil ◽  
Cláudia Fançony

The capacity of the lethal Plasmodium falciparum parasite to develop resistance against anti-malarial drugs represents a central challenge in the global control and elimination of malaria. Historically, the action of drug transporters is known to play a pivotal role in the capacity of the parasite to evade drug action. MRPs (Multidrug Resistance Protein) are known in many phylogenetically diverse groups to be related to drug resistance by being able to handle a large range of substrates, including important endogenous substances as glutathione and its conjugates. P. falciparum MRPs are associated with in vivo and in vitro altered drug response, and might be important factors for the development of multi-drug resistance phenotypes, a latent possibility in the present, and future, combination therapy environment. Information on P. falciparum MRPs is scattered in the literature, with no specialized review available. We herein address this issue by reviewing the present state of knowledge.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Rayana L. Bighetti-Trevisan ◽  
Lucas O. Sousa ◽  
Rogerio M. Castilho ◽  
Luciana O. Almeida

A frequent observation in several malignancies is the development of resistance to therapy that results in frequent tumor relapse and metastasis. Much of the tumor resistance phenotype comes from its heterogeneity that halts the ability of therapeutic agents to eliminate all cancer cells effectively. Tumor heterogeneity is, in part, controlled by cancer stem cells (CSC). CSC may be considered the reservoir of cancer cells as they exhibit properties of self-renewal and plasticity and the capability of reestablishing a heterogeneous tumor cell population. The endowed resistance mechanisms of CSC are mainly attributed to several factors including cellular quiescence, accumulation of ABC transporters, disruption of apoptosis, epigenetic reprogramming, and metabolism. There is a current need to develop new therapeutic drugs capable of targeting CSC to overcome tumor resistance. Emerging in vitro and in vivo studies strongly support the potential benefits of combination therapies capable of targeting cancer stem cell-targeting agents. Clinical trials are still underway to address the pharmacokinetics, safety, and efficacy of combination treatment. This review will address the main characteristics, therapeutic implications, and perspectives of targeting CSC to improve current anticancer therapeutics.


2021 ◽  
Vol 11 ◽  
Author(s):  
María Zenaida Saavedra-Leos ◽  
Euclides Jordan-Alejandre ◽  
César López-Camarillo ◽  
Amaury Pozos-Guillen ◽  
César Leyva-Porras ◽  
...  

Resveratrol and quercetin are natural compounds contained in many foods and beverages. Reports indicate implications for the health of the general population; on the other hand the use of both compounds has interesting results for the treatment of many diseases as cardiovascular affections, diabetes, Alzheimer’s disease, viral and bacterial infections among others. Based on their capacities described as anti-inflammatory, antioxidant, and anti-aging, resveratrol and quercetin showed antiproliferative and anticancer activity specifically in maligned cells. These molecular characteristics trigger the pharmacological repurposing of both compounds and improved its research for treating different cancer types with interesting results at in vitro, in vivo, and clinical trial studies. Meanwhile, the development of different systems of drug release in specific sites as nanomaterials and specifically the nanoparticles, potentiates the personal treatment perspective in conjunct with the actual cancer therapies; regularly invasive and aggressive, the perspective of nanomedicine as higher effective and lower invasive has gained popularity. Knowledge of molecular interactions of resveratrol and quercetin in diseases confirms the evidence of multiple benefits, while the multiple analyses suggested a positive response for the treatment and diagnostics of cancer in different stages, including at metastatic stage. The present work reviews the reports related to the impact of resveratrol and quercetin in cancer treatment and its effects when the antioxidants are encapsulated in different nanoparticle systems, which improve the prospects of cancer treatment.


2021 ◽  
Vol 14 (2) ◽  
pp. 157 ◽  
Author(s):  
Paula Garcia-Oliveira ◽  
Paz Otero ◽  
Antia Gonzalez Pereira ◽  
Franklin Chamorro ◽  
Maria Carpena ◽  
...  

Nowadays, cancer is one of the deadliest diseases in the world, which has been estimated to cause 9.9 million deaths in 2020. Conventional treatments for cancer commonly involve mono-chemotherapy or a combination of radiotherapy and mono-chemotherapy. However, the negative side effects of these approaches have been extensively reported and have prompted the search of new therapeutic drugs. In this context, scientific community started to look for innovative sources of anticancer compounds in natural sources, including traditional plants. Currently, numerous studies have evaluated the anticancer properties of natural compounds derived from plants, both in vitro and in vivo. In pre-clinical stages, some promising compounds could be mentioned, such as the sulforaphane or different phenolic compounds. On the other hand, some phytochemicals obtained positive results in clinical stages and were further approved for cancer treatment, such as vinca alkaloids or the paclitaxel. Nevertheless, these compounds are not exempt of limitations, such as low solubility, restricted effect on their own, negative side-effects, etc. This review aims to compile the information about the current phytochemicals used for cancer treatment and also promising candidates, main action mechanisms and also reported limitations. In this sense, some strategies to face the limitations have been considered, such as nano-based formulations to improve solubility or chemical modification to reduce toxicity. In conclusion, although more research is still necessary to develop more efficient and safe phytochemical drugs, more of these compounds might be used in future cancer therapies.


Author(s):  
Morteza Ghandadi

Background: Multi Drug Resistance (MDR) is known to defeat most chemotherapies as one of the main anticancer strategies. The role of overexpression or overactivation of ATPBinding Cassette (ABC) transporters, especially P-glycoprotein (P-gp), in the development of chemotherapy has long been demonstrated. Salinispora is a marine actinomycete genus known for the production of novel bioactive metabolites. Objectives: In this study, the potential of Salinispora derived metabolites as inhibitor of ATPbinding cassette (ABC) transports have been investigated using in-silico approaches. Methods: Physicochemical, pharmacokinetic and drug likeness of the Salinispora derived metabolites have been analyzed using SwissADME server. This was accompanied by the employment of docking strategy to evaluate anti-MDR potential of the metabolites using P-gp, Breast Cancer Resistance Protein (BCRP) and Multidrug Resistance Protein 1 (MRP-1) as target proteins. Results: Nineteen metabolites were found to have demonstrated appropriate physicochemical, pharmacokinetic, and drug-likeness properties and were involved in the docking studies. Based on docking studies, saliniquinones, cyclomarazine, and cyanosporoside A demonstrated ABC transporters inhibitory potential. Conclusion: Our results suggest that further in vivo and in vitro studies on anti-MDR effects of Salinispora-derived metabolites are warranted.


2020 ◽  
Vol 20 (11) ◽  
pp. 821-830
Author(s):  
Prasad Pofali ◽  
Adrita Mondal ◽  
Vaishali Londhe

Background: Current gene therapy vectors such as viral, non-viral, and bacterial vectors, which are used for cancer treatment, but there are certain safety concerns and stability issues of these conventional vectors. Exosomes are the vesicles of size 40-100 nm secreted from multivesicular bodies into the extracellular environment by most of the cell types in-vivo and in-vitro. As a natural nanocarrier, exosomes are immunologically inert, biocompatible, and can cross biological barriers like the blood-brain barrier, intestinal barrier, and placental barrier. Objective: This review focusses on the role of exosome as a carrier to efficiently deliver a gene for cancer treatment and diagnosis. The methods for loading of nucleic acids onto the exosomes, advantages of exosomes as a smart intercellular shuttle for gene delivery and therapeutic applications as a gene delivery vector for siRNA, miRNA and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and also the limitations of exosomes as a gene carrier are all reviewed in this article. Methods: Mostly, electroporation and chemical transfection are used to prepare gene loaded exosomes. Results: Exosome-mediated delivery is highly promising and advantageous in comparison to the current delivery methods for systemic gene therapy. Targeted exosomes, loaded with therapeutic nucleic acids, can efficiently promote the reduction of tumor proliferation without any adverse effects. Conclusion: In the near future, exosomes can become an efficient gene carrier for delivery and a biomarker for the diagnosis and treatment of cancer.


2018 ◽  
Vol 18 (6) ◽  
pp. 769-775 ◽  
Author(s):  
Dayun Yan ◽  
Jonathan H. Sherman ◽  
Michael Keidar

Background: Over the past five years, the cold atmospheric plasma-activated solutions (PAS) have shown their promissing application in cancer treatment. Similar as the common direct cold plasma treatment, PAS shows a selective anti-cancer capacity in vitro and in vivo. However, different from the direct cold atmospheric plasma (CAP) treatment, PAS can be stored for a long time and can be used without dependence on a CAP device. The research on PAS is gradually becoming a hot topic in plasma medicine. Objectives: In this review, we gave a concise but comprehensive summary on key topics about PAS including the development, current status, as well as the main conclusions about the anti-cancer mechanism achieved in past years. The approaches to make strong and stable PAS are also summarized.


Sign in / Sign up

Export Citation Format

Share Document