scholarly journals Elovl2-Ablation Leads to Mitochondrial Membrane Fatty Acid Remodeling and Reduced Efficiency in Mouse Liver Mitochondria

Author(s):  
Alexia Gómez Rodríguez ◽  
Emanuela Talamonti ◽  
Alba Naudi ◽  
Anastasia V. Kalinovich ◽  
Anna M. Pauter ◽  
...  

The fatty acid elongase ELOngation of Very-Long-chain fatty acids protein 2 (ELOVL2) controls the elongation of polyunsaturated fatty acids (PUFA) producing precursors for omega-3, do-cosahexaenoic acid (DHA), and omega-6, docosapentaenoic acid (DPAn6) in-vivo. Expectedly, Elovl2-ablation drastically reduced the DHA and DPAn6 in liver mitochondrial membranes. Unexpectedly, however, total PUFAs levels decreased further than could be explained by Elovl2 ablation. The lipid peroxidation process was not involved in PUFAs reduction since malondial-dehyde-lysine (MDAL) and other oxidative stress biomarkers were not enhanced. The content of mitochondrial respiratory chain proteins remained unchanged. Still, membrane remodeling was associated with high voltage-dependent anion channel (VDAC) and adenine nucleotide trans-locase 2 (ANT2), a possible reflection of the increased demand on phospholipid transport to the mitochondria. Mitochondrial function was impaired despite preserved content of the respiratory chain proteins and the absence of oxidative damage. Oligomycin-insensitive oxygen consumption increased, and coefficients of respiratory control were reduced by 50%. The mitochondria became very sensitive to fatty acid-induced uncoupling and permeabilization, where ANT2 is involved. Mitochondrial volume and number of peroxisomes increased as revealed by transmission elec-tron microscopy. In conclusion, the results imply that endogenous DHA production is vital for the normal function of mouse liver mitochondria and could be relevant not only for mice but also for human metabolism.

2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1473-1473
Author(s):  
Bonnie Patchen ◽  
Jiayi Xu ◽  
Dana Hancock ◽  
Patricia Cassano

Abstract Objectives Cross-sectional studies have found positive associations of plasma omega-3 polyunsaturated fatty acids (N-3 PUFAs) and lung function parameters, including the forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC). We used Mendelian randomization (MR) to address potential limitations in previous findings, including residual confounding and reverse causality, and improve causal inference for the relationship of N-3 PUFAs on lung function. Methods We instrumented the N-3 PUFAs alpha-linolenic acid (ALA), eicosapentanoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA) with genetic variants in the fatty acid desaturase (FADS1/FADS2) and fatty acid elongase (ELOVL2) genes. We performed two sample MR, using genome-wide association data for N-3 PUFAs in the Cohorts for Heart and Aging Research in Genetic Epidemiology Consortium and for FEV1 and FVC in the UK Biobank. We also performed multivariable MR (MVMR) including linoleic acid (LA), the main dietary N-6 PUFA, to account for shared genetic predictors. We used the Wald's ratio or inverse variance weighted method in all analyses. Results In univariable MR, ALA was negatively associated with FEV1 (−0.27 ± 0.13 SD/% total FA, P = 0.02), while EPA was positively associated with FEV1 (0.05 ± 0.02 SD/% total FA, P = 0.02). The DPA—FEV1 association was similar to EPA (P = 0.05). These results align with the opposing effects of FADS1/2 variants on ALA vs EPA and DPA. DHA was not associated with FEV1 and there were no statistically significant N-3 PUFA—FVC associations. Using GWAS estimates adjusted for correlated N3-PUFAs did not alter these results. In MVMR including LA, the ALA—FEV1 associations were strengthened (P = 0.007), while the EPA—and DPA—FEV1 associations were no longer statistically significant. Conclusions Our analyses suggest that higher ALA has a direct negative effect on lung function, while the positive effects of EPA and DPA may be through the balance of N-3 and N-6 PUFA metabolism. However, interpretation of MVRM findings when modeling metabolic pathways needs further consideration. Funding Sources This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health Training Program (T32) in Translational Nutrition Research at Cornell University.


2014 ◽  
Vol 4 (1) ◽  
pp. 31-39
Author(s):  
Siwitri Kadarsih

The objective was to get beef that contain unsaturated fatty acids (especially omega 3 and 6), so as to improve intelligence, physical health for those who consume. The study design using CRD with 3 treatments, each treatment used 4 Bali cattle aged approximately 1.5 years. Observations were made 8 weeks. Pasta mixed with ginger provided konsentrat. P1 (control); P2 (6% saponification lemuru fish oil, olive oil 1%; rice bran: 37.30%; corn: 62.70%; KLK: 7%, ginger paste: 100 g); P3 (lemuru fish oil saponification 8%, 2% olive oil; rice bran; 37.30; corn: 62.70%; KLK: 7%, ginger paste: 200 g). Konsentrat given in the morning as much as 1% of the weight of the cattle based on dry matter, while the grass given a minimum of 10% of the weight of livestock observation variables include: fatty acid composition of meat. Data the analyzies qualitative. The results of the study showed that the composition of saturated fatty acids in meat decreased and an increase in unsaturated fatty acids, namely linoleic acid (omega 6) and linolenic acid (omega 3), and deikosapenta deikosaheksa acid.Keywords : 


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1811
Author(s):  
Ella Aitta ◽  
Alexis Marsol-Vall ◽  
Annelie Damerau ◽  
Baoru Yang

Baltic herring (Clupea harengus membras) is one of the most abundant commercially caught fish species from the Baltic Sea. Despite the high content of fat and omega-3 fatty acids, the consumption of Baltic herring has decreased dramatically over the last four decades, mostly due to the small sizes and difficulty in processing. At the same time there is an increasing global demand for fish and fish oil rich in omega-3 fatty acids. This study aimed to investigate enzyme-assisted oil extraction as an environmentally friendly process for valorizing the underutilized fish species and by-products to high quality fish oil for human consumption. Three different commercially available proteolytic enzymes (Alcalase®, Neutrase® and Protamex®) and two treatment times (35 and 70 min) were investigated in the extraction of fish oil from whole fish and by-products from filleting of Baltic herring. The oil quality and stability were studied with peroxide- and p-anisidine value analyses, fatty acid analysis with GC-FID, and volatile compounds with HS-SPME-GC-MS. Overall, longer extraction times led to better oil yields but also increased oxidation of the oil. For whole fish, the highest oil yields were from the 70-min extractions with Neutrase and Protamex. Protamex extraction with 35 min resulted in the best fatty acid composition with the highest content of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) but also increased oxidation compared to treatment with other enzymes. For by-products, the highest oil yield was obtained from the 70-min extraction with Protamex without significant differences in EPA and DHA contents among the oils extracted with different enzymes. Oxidation was lowest in the oil produced with 35-min treatment using Neutrase and Protamex. This study showed the potential of using proteolytic enzymes in the extraction of crude oil from Baltic herring and its by-products. However, further research is needed to optimize enzymatic processing of Baltic herring and its by-products to improve yield and quality of crude oil.


2021 ◽  
Vol 11 (5) ◽  
pp. 2409
Author(s):  
Wojciech Kolanowski

Salmonids are valuable fish in the human diet due to their high content of bioactive omega-3 very long-chain polyunsaturated fatty acid (VLC PUFA). The aim of this study was to assess the omega-3 VLC PUFA content in selected salmonid fish present on the food market regarding whether they were farm-raised or wild. It was assumed that farm-raised fish, by eating well-balanced feed enriched with omega-3 PUFA, might contain omega-3 VLC PUFA in levels similar to that of wild fish. Fat content, fatty acid composition and omega-3 VLC PUFA content in fish fillets were measured. Farm-raised salmon from Norway, wild Baltic salmon, farm-raised rainbow trout and brown trout were bought from a food market whereas wild trout (rainbow and brown) were caught alive. The fat content in fish ranged from 3.3 to 8.0 g/100 g of fillet. It was confirmed that although wild salmonid fish contain 10–25% more omega-3 VLC PUFA in lipid fraction, the farm-raised ones, due to the 60–100% higher fat content, are an equally rich source of these desirable fatty acids in the human diet. One serving (130 g) of salmonid fish fillets might provide a significant dose of omega-3 VLC PUFA, from 1.2 to 2.5 g. Thus, due to very high content of bioactive fatty acids eicosapentaenoic (EPA), docosapentaenoic (DPA) and docosahexaenoic (DHA) in their meat, salmonid fish currently present on the food market, both sea and freshwater as well as wild and farm-raised, should be considered as natural functional food.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 524 ◽  
Author(s):  
Lu ◽  
Eiriksson ◽  
Thorsteinsdóttir ◽  
Simonsen

Bryophytes (mosses, liverworts and hornworts) often produce high amounts of very long-chain polyunsaturated fatty acids (vl-PUFAs) including arachidonic acid (AA, 20:4 △5,8,11,14) and eicosapentaenoic acid (EPA, 20:5 △5,8,11,14,17). The presence of vl-PUFAs is common for marine organisms such as algae, but rarely found in higher plants. This could indicate that bryophytes did not lose their marine origin completely when they landed into the non-aqueous environment. Vl-PUFA, especially the omega-3 fatty acid EPA, is essential in human diet for its benefits on healthy brain development and inflammation modulation. Recent studies are committed to finding new sources of vl-PUFAs instead of fish and algae oil. In this review, we summarize the fatty acid compositions and contents in the previous studies, as well as the approaches for qualification and quantification. We also conclude different approaches to enhance AA and EPA productions including biotic and abiotic stresses.


2015 ◽  
Vol 22 (3) ◽  
pp. 153-162 ◽  
Author(s):  
Juçara X. Zaparoli ◽  
Eduardo K. Sugawara ◽  
Altay A.L. de Souza ◽  
Sérgio Tufik ◽  
José Carlos F. Galduróz

Background: High oxidative stress, which is caused by smoking, can alter omega-3 fatty acid concentrations. Since omega-3 fatty acids play a role in dopaminergic neurotransmission related to dependence, it is important to understand their effects on nicotine dependence. Methods: This research comprised 2 studies. The first one consisted of a cross-sectional evaluation, in which the levels of the most important omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), were compared between smokers and non-smokers in a sample of 171 individuals; of them, 120 were smokers and 51 were non-smokers. The other study was a clinical, double-blind, randomized, placebo controlled, in which 63 smokers received daily treatment with capsules of fish oil (a source of omega-3/3 g/day) or mineral oil (used as placebo, also 3 g/day), taken 3 times a day for 90 days. Each fish oil capsules contained approximately 210.99 mg EPA and 129.84 mg of DHA. The outcome was evaluated by means of psychometric and biological measures as well as self-reports of tobacco use. The evaluations were carried out at the beginning of treatment and once a month thereafter (total of 4 times). Outcomes: The omega-3 fatty acid lipid profile showed that smokers present lower concentrations of DHA. After treatment, the omega-3 group showed a significant reduction in their levels of dependence. Interpretation: Smokers showed lower peripheral levels of omega-3, and treatment with the most important omega-3 fatty acids brought about a reduction in nicotine dependence.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Frida Dangardt ◽  
Yun Chen ◽  
Eva Gronowitz ◽  
Jovanna Dahlgren ◽  
Peter Friberg ◽  
...  

Obese adolescents have high concentrations of saturated fatty acids and low omega-3 long-chain polyunsaturated fatty acids (LCUFAs) in plasma phospholipids. We aimed to investigate effects of omega-3 LCPUFA supplementation to obese adolescents on skeletal muscle lipids and glucose and insulin homeostasis. Twenty-five obese adolescents (14–17 years old, 14 females) completed a randomized double-blind crossover study supplying capsules containing either 1.2 g omega-3 LCPUFAs or placebo, for 3 months each with a six-week washout period. Fasting blood glucose, insulin, leptin, adiponectin, and lipids were measured. Intravenous glucose tolerance test (IVGTT) and euglycemic-hyperinsulinemic clamp were performed, and skeletal muscle biopsies were obtained at the end of each period. The concentrations of EPA, DHA, and total omega-3 PUFA in muscle phospholipids increased in both sexes. In the females, omega-3 LCPUFA supplementation improved glucose tolerance by 39% (P=0.04) and restored insulin concentration by 34% (P=0.02) during IVGTT. Insulin sensitivity improved 17% (P=0.07). In males, none of these parameters was influenced by omega-3 supplementation. Thus, three months of supplementation of omega-3 LCPUFA improved glucose and insulin homeostasis in obese girls without influencing body weight.


2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
C. Castro-Correia ◽  
S. Sousa ◽  
S. Norberto ◽  
C. Matos ◽  
V. F. Domingues ◽  
...  

Context. Several studies have shown a link between proinflammatory activity and the presence or deficit of some fatty acids. Inflammation is associated with several diseases including diabetes.Objective. To characterize and compare the fatty acids profiles in children with inaugural type 1 diabetes, diabetic children (at least 1 year after diagnosis), and healthy children.Design. Plasma fatty acids profiles in children with inaugural diabetes, children with noninaugural diabetes, and controls, all of whom were prepubescent with a BMI < 85th percentile, were evaluated.Results. Omega-3 fatty acid levels were higher in recently diagnosed subjects with diabetes than in controls. The ratio of omega-6/omega-3 fatty acids was higher in the control population. Omega-6 fatty acid levels were higher in the nonrecent diabetic subjects than in the children with recently diagnosed diabetes, and the levels were higher in the nonrecent diabetes group compared to the control group.Conclusion. Our findings showed higher levels of alpha-linolenic acid, EPA, and DHA, as well as mono- and polyunsaturated fatty acids, in diabetic children. These findings reinforce the importance of precocious nutritional attention and intervention in the treatment of diabetic children.


Circulation ◽  
2014 ◽  
Vol 129 (suppl_1) ◽  
Author(s):  
Claire Newlon ◽  
Matthew Muldoon ◽  
Susan Sereika ◽  
Dora Kuan

Background: Greater consumption of omega-3 fatty acids has been associated with lower cardiovascular disease risk. Randomized controlled trials indicate direct, albeit small, beneficial effects of omega-3 fatty acids on plasma triglycerides and blood pressure, yet few studies have tested their impact on insulin resistance and the clustered risk factors comprising the metabolic syndrome. Hypothesis: Short-term supplementation with marine omega-3 polyunsaturated fatty acids, EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) will improve aggregated cardiometabolic risk (CMR) in healthy middle-aged adults Methods: We conducted a double-blind, placebo-controlled, parallel group clinical trial. Subjects were 30-54 year-old adults free of atherosclerotic disease and diabetes whose intake of EPA and DHA totaled <300 mg/day. Each was randomly assigned to daily fish oil supplements (2g/day containing 1000 mg EPA and 400mg DHA) or matching soybean oil placebo for 18 weeks. Aggregate CMR at baseline and post-intervention was calculated as the standardized sum of standardized distributions of blood pressure, BMI, and fasting serum triglycerides, glucose, and HDL (reverse scored). Missing data due to dropouts (n=17) and outliers (1-6 per variable) were replaced by multivariate imputation. Outcome analyses were conducted with linear regressions of all randomized subjects based on intention-to-treat. Results: Participants were 272 healthy adult (57% (154 out of 272) women; 17% (47 out of 272) minority; mean age 42) Pittsburgh-area residents. At baseline, demographics, health parameters, physical activity and EPA and DHA consumption did not differ significantly between treatment groups. No overall treatment effect was found, whereas gender moderated the effects of treatment on CMR risk (gender, p=.001 and gender*treatment interaction term p=.011). In gender-specific analyses, supplementation lowered CMR risk relative to placebo in men(p=.036, effect size=.629, standard error (SE) =.282) but not women (p=.168, effect size .261, SE=.222). Of the individual CMR variables, only HDL-cholesterol in men revealed a significant improvement (p=.012). In men receiving placebo, HDL-cholesterol fell by 1.1 mg/dl, whereas in those receiving fish oil, HDL rose by 1.7 mg/dl. As has been noted in other samples, compared to women men had greater CMR and lower HDL-cholesterol. Conclusions: Increased intake of n-3 fatty acids over 4 months reduced CMR in healthy, mid-life men but not women. This finding may be due to poorer baseline CMR and HDL characteristic of men, or to gender differences in fatty acid metabolism. Further study of gender differences in cardiometabolic risk and fatty acid metabolism may lead to gender-tailored preventive interventions.


Sign in / Sign up

Export Citation Format

Share Document