Effect of Cinnamon and its Procyanidin-B2 on Diabetic Retinopathy in Rats

2019 ◽  
Vol 56 (2) ◽  
pp. 109
Author(s):  
Muthenna Puppala ◽  
Kishore Kumar Godisela ◽  
Bhanuprakash Reddy Geereddy ◽  
Akileshwari Chandrashaker ◽  
Raghu Gangula

<p><em>Advanced glycation end products (AGE) are amalgamated in the development of certain pathophysiologies including diabetic retinopathy (DR). Procyanidin-B2 (PCB2), an active principle of cinnamon, has shown to inhibit AGE formation</em><em>. In current study we inspected the protective role of PCB2 to prevent DR in diabetic rats.<strong> </strong>Diabetes was induced in Wistar-NIN rats by intraperitoneal injection of streptozotocin (35 mg/kg bodyweight) and the control rats received vehicle alone. The retinal morphology was studied by microscopy and immunohistochemistry of diabetic and control rats. The expression of retinal selective genes analysis was done via real-time PCR. Immunoblotting of diabetic and control rat retina was studied. Gene expression and immunohistochemistry and immunofluorescence analysis of diabetic retina from PCB2 and cinnamon fed rat showed declined expression of VEGF and GFAP and increased expression of NGF. Immunoblotting analysis resulted that feeding of PCB2 significantly reserved the formation of carboxy methyl lysine and RAGE in diabetic rats compare with controls. The results indicate that PCB2 was effective in protecting the diabetic retina from development of diabetic retinopathy in rats owing to its antiglycating potential. Thus, active principle of dietary sources, such as PCB2, may be explored for the prevention or delay of DR.<strong></strong></em></p>

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Abdulrahman L. Al-Malki

The overproduction of reactive oxygen species (ROS) plays a central role in the pathogenesis of endothelial damage in diabetes. To assess the effect of oat on experimental diabetic retinopathy, five groups of Albino rats were studied: nondiabetic control, untreated diabetic, and diabetic rats treated with 5%, 10%, and 20% (W/W) oat of the diet for 12 weeks. Novel data were obtained in this study indicating a protective role of oat against oxidative stress and diabetic retinopathy. The effects of oat on parameters of oxidative stress, AGE, and nuclear factor kappa B (NF-B) were assessed by ELISA and NF-B activation by electrophoretic mobility shift assay. Tumor necrosis factor alpha (TNF) and vascular endothelial growth factor (VEGF) were also determined. After 12 weeks of diabetes, oat treatment reduced blood glucose levels, HbA1c, all oxidative stress markers, CML, normalized NF-B activation and TNF expression. Furthermore it reduced VEGF in the diabetic retina by 43% (). In conclusion, oat modulates microvascular damage through normalized pathways downstream of ROS overproduction and reduction of NF-B and its controlled genes activation, which may provide additional endothelial protection.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
Jia-sheng Wu ◽  
Rong Shi ◽  
Jie Zhong ◽  
Xiong Lu ◽  
Bing-liang Ma ◽  
...  

In Chinese medicine, Xiexin decoction (XXD) has been used for the clinical treatment of diabetes for at least 1700 years. The present study was conducted to investigate the effective ingredients of XXD and their molecular mechanisms of antidiabetic nephropathy in rats. Rats with diabetes induced by high-fat diet and streptozotocin were treated with XXD extract for 12 weeks. XXD significantly improved the glucolipid metabolism disorder, attenuated albuminuria and renal pathological changes, reduced renal advanced glycation end-products, inhibited receptor for advanced glycation end-product and inflammation factors expression, suppressed renal nuclear factor-κB pathway activity, and downregulated renal transforming growth factor-β1. The concentrations of multiple components in plasma from XXD were determined by liquid chromatography and tandem mass spectrometry. Pharmacokinetic/pharmacodynamic analysis using partial least square regression revealed that 8 ingredients of XXD were responsible for renal protective effects via actions on multiple molecular targets. Our study suggests that the renal protective role of XXD with multiple effective ingredients involves inhibition of inflammation through downregulation of the nuclear factor-κB pathway, reducing renal advanced glycation end-products and receptor for advanced glycation end-product in diabetic rats.


Author(s):  
Basiru Olaitan Ajiboye ◽  
Babatunji Emmanuel Oyinloye ◽  
Jennifer Chidera Awurum ◽  
Sunday Amos Onikanni ◽  
Adedotun Adefolalu ◽  
...  

Abstract Objectives The current study evaluates the protective role of aqueous extract of Sterculia tragacantha leaf (AESTL) on pancreatic gene expressions (insulin, PCNA, PDX-1, KI-67 and GLP-1R) and oxidative stress parameters in streptozotocin-induced diabetic rats. Methods Diabetes mellitus was induced into the experimental Wistar animals via intraperitoneal (IP) injection of streptozotocin (35 mg/kg body weight) and 5% glucose water was given to the rats for 24 h after induction. The animals were categorized into five groups of 10 rats each as follows normal control, diabetic control, diabetic rats administered AESTL (150 and 300 mg/kg body weight) and diabetic rats administered metformin (200 mg/kg) orally for two weeks. Thereafter, the animals were euthanized, blood sample collected, pancreas harvested and some pancreatic gene expressions (such as insulin, PCNA, PDX-1, KI-67, and GLP-1R)s as well as oxidative stress parameters were analyzed. Results The results revealed that AESTL significantly (p<0.05) reduced fasting blood glucose level, food and water intake, and lipid peroxidation in diabetic rats. Diabetic rats administered different doses of AESTL showed a substantial upsurge in body weight, antioxidant enzyme activities, and pancreatic gene expressions (insulin, PCNA, PDX-1, KI-67, and GLP-1R). Conclusions It can therefore be concluded that AESTL has the ability to protect the pancreas during diabetes mellitus conditions.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (11) ◽  
pp. 58-60
Author(s):  
N Solanki ◽  
◽  
S. K Bhavsar

Ficus racemosa is used in traditional system of medicine for various health problems and diseases, and is commonly known as Gular fig. The main objective was to study its effects against streptozotocin induced diabetic neuropathy by structural and functional marker. Investigation of diabetic neuropathy was carried out through functional and structural assessment in streptozotocin induced in diabetic rats. Diabetic rats were treated for 28 days in dose dependent manner of Ficus racemosa aqueous extract (250 mg/kg and 500 mg/kg) and ethanolic extract (200 mg/kg and 400 mg/kg). Study showed marked protection observed by Ficus racemosa in hippocampus region of brain and sciatic nerve tissues. Ficus racemosa treatment showed improvement in functional and structural markers, which strongly suggest its protective role in diabetic neuropathy.


2021 ◽  
Author(s):  
Amany Mohamed Shalaby ◽  
Adel Mohamed Aboregela ◽  
Mohamed Ali Alabiad ◽  
Mona Tayssir Sadek

Abstract Diabetes mellitus (DM) represents a widespread metabolic disease with a well-known neurotoxicity in both central and peripheral nervous systems. Oxymatrine is a traditional Chinese herbal medicine that has various pharmacological activities including; anti-oxidant, anti-apoptotic and anti-inflammatory potentials. The present work aimed to study the impact of diabetes mellitus on the cerebellar cortex of adult male albino rat and to evaluate the potential protective role of oxymatrine using different histological methods. Fifty-five adult male rats were randomly divided into three groups: group I served as control, group II was given oxymatrine (80 mg/kg/day) orally for 8 weeks and group III was given a single dose of streptozotocin (50mg/kg) intaperitoneally to induce diabetes. Then diabetic rats were subdivided into two subgroups: subgroup IIIa that received no additional treatment and subgroup IIIb that received oxymatrine similar to group II. The diabetic group revealed numerous changes in the Purkinje cell layer in the form of multilayer arrangement of Purkinje cells, shrunken cells with deeply stained nuclei as well as focal loss of the Purkinje cells. A significant increment in GFAP and synaptophysin expression was reported. Transmission electron microscopy showed irregularity and splitting of myelin sheaths in the molecular layer, dark shrunken Purkinje cells with ill-defined nuclei, dilated Golgi saccules and dense granule cells with irregular nuclear outlines in the granular layer. In contrast, these changes were less evident in diabetic rats that received oxymatrine. In conclusion, Oxymatrine could protect the cerebellar cortex against changes induced by DM.


1993 ◽  
Vol 4 (6) ◽  
pp. 1327-1336
Author(s):  
F X Dai ◽  
A Diederich ◽  
J Skopec ◽  
D Diederich

The vasoactive responses of renal arteries from diabetic and control rats were compared in vitro in arteriograph assemblies. Diabetes was established by an iv injection of streptozotocin (55 mg/kg) in Wistar-Kyoto rats. Endothelium-dependent relaxations mediated by nitric oxide (EDNO) were impaired in arteries from the diabetic rats; the impairment in endothelial function increased with duration of the diabetic state. After 6 and 16 wk, the concentrations of acetylcholine required to produce 50% relaxation of norepinephrine preconstriction were 3.2 and 25 microM for arteries from diabetic rats and 0.4 microM in control arteries, representing 8- and 62-fold decreases in sensitivity to the endothelium-dependent vasodilator in the diabetic arteries. After 6 wk of diabetes, renal arteries also became 20-fold less sensitive to relaxation induced by histamine, another agonist that induces EDNO-mediated relaxations. The inhibition of EDNO production with L-NG-nitroarginine produced greater impairments in acetylcholine relaxations in arteries from diabetic rats than from control rats. Relaxations in response to acetylcholine were impaired in arteries from diabetic rats because of increased production of factors that opposed the vasorelaxant effects of EDNO, rather than from decreased production of EDNO. Pretreatment of the diabetic arteries with the hydroxyl radical scavenger dimethylthiourea normalized relaxations in response to acetylcholine. The blockade of prostaglandin H2-thromboxane A2 receptors with SQ 29548 also improved relaxations in response to acetylcholine in diabetic arteries. These data indicate that endothelial dysfunction in the renal arteries of diabetic rats may be mediated by the increased production of free radicals and of prostaglandin endoperoxides, which oppose the vasorelaxant effects of EDNO.


2018 ◽  
Vol 24 (19) ◽  
pp. 2180-2187 ◽  
Author(s):  
Mohammad Shamsul Ola ◽  
Dalia Al-Dosari ◽  
Abdullah S. Alhomida

Diabetic Retinopathy (DR) is one of the leading causes of decreased vision and blindness in developed countries. Diabetes-induced metabolic disorder is believed to increase oxidative stress in the retina. This results in deleterious change through dysregulation of cellular physiology that damages both neuronal and vascular cells. In this review, we first highlight the evidence of potential metabolic sources and pathways which increase oxidative stress that contribute to retinal pathology in diabetes. As oxidative stress is a central factor in the pathophysiology of DR, antioxidants therapy would be beneficial towards preventing the retinal damage. A number of experimental studies by our group and others showed that dietary flavonoids cause reduction in increased oxidative stress and other beneficial effects in diabetic retina. We then discuss the beneficial effects of the six major flavonoid families, such as flavanones, flavanols, flavonols, isoflavones, flavones and anthocyanins, which have been studied to improve retinal damage. Flavanoids, being known antioxidants, may ameliorate the retinal degenerative factors including apoptosis, inflammation and neurodegeneration in diabetes. Therefore, intake of potential dietary flavonoids would limit oxidative stress and thereby prevent the retinal damage, and subsequently the development of DR.


Sign in / Sign up

Export Citation Format

Share Document