scholarly journals Is Spatial Distribution of the HIV-1-resistant CCR5Δ32 Allele Formed by Ecological Factors?

2005 ◽  
Vol 24 (4) ◽  
pp. 375-382 ◽  
Author(s):  
Oleg Balanovsky ◽  
Elvira Pocheshkhova ◽  
Andrey Pshenichnov ◽  
Daria Solovieva ◽  
Marina Kuznetsova ◽  
...  
1995 ◽  
pp. 3-21
Author(s):  
S. S. Kholod

One of the most difficult tasks in large-scale vegetation mapping is the clarification of mechanisms of the internal integration of vegetation cover territorial units. Traditional way of searching such mechanisms is the study of ecological factors controlling the space heterogeneity of vegetation cover. In essence, this is autecological analysis of vegetation. We propose another way of searching the mechanisms of territorial integration of vegetation. It is connected with intracoenotic interrelation, in particular, with the changing role of edificator synusium in a community along the altitudinal gradient. This way of searching is illustrated in the model-plot in subarctic tundra of Central Chukotka. Our further suggestion concerns the way of depicting these mechanisms on large-scale vegetation map. As a model object we chose the catena, that is the landscape formation including all geomorphjc positions of a slope, joint by the process of moving the material down the slope. The process of peneplanation of a mountain system for a long geological time favours to the levelling the lower (accumulative) parts of slopes. The colonization of these parts of the slope by the vegetation variants, corresponding to the lowest part of catena is the result of peneplanation. Vegetation of this part of catena makes a certain biogeocoenotic work which is the levelling of the small infralandscape limits and of the boundaries in vegetation cover. This process we name as the continualization on catena. In this process the variants of vegetation in the lower part of catena are being broken into separate synusiums. This is the process of decumbation of layers described by V. B. Sochava. Up to the slope the edificator power of the shrub synusiums sharply decreases. Moss and herb synusium have "to seek" the habitats similar to those under the shrub canopy. The competition between the synusium arises resulting in arrangement of a certain spatial assemblage of vegetation cover elements. In such assemblage the position of each element is determined by both biotic (interrelation with other coenotic elements) and abiotic (presence of appropriate habitats) factors. Taking into account the biogeocoenotic character of the process of continualization on catena we name such spatial assemblage an exolutionary-biogeocoenotic series. The space within each evolutionary-biogeocoenotic series is divided by ecological barriers into some functional zones. In each of the such zones the struggle between synusiums has its individual expression and direction. In the start zone of catena (extensive pediment) the interrelations of synusiums and layers control the mutual spatial arrangement of these elements at the largest extent. Here, as a rule, there predominate edificator synusiums of low and dwarfshrubs. In the first order limit zone (the bend of pediment to the above part of the slope) one-species herb and moss synusiums, oftenly substituting each other in similar habitats, get prevalence. In the zone of active colonization of slope (denudation slope) the coenotic factor has the least role in the spatial distribution of the vegetation cover elements. In particular, phytocoenotic interactions take place only within separate microcoenoses of herbs, mosses and lichens. In the zone of the attenuation of continualization process (the upper most parts of slope, crests) phytocoenotic interactions are almost absent and the spatial distribution of vegetation cover elements depends exclusively on the abiotic factors. The principal scheme of the distribution of vegetation cover elements and the disposition of functional zones on catena are shown on block-diagram (fig. 1).


2020 ◽  
Vol 203 ◽  
pp. 01001
Author(s):  
Aleksandr Toushkin ◽  
Alia Toushkina ◽  
Olga Matveeva ◽  
Aleksandr Senchik

This article is based on the materials of long-term (2000-2019) data of winter route census (WMA) of the Manchurian pheasant population inhabiting the Amur Region. The main limiting factors causing fluctuations in the number of these bird species have been identified. The spatial distribution of birds by habitat within the range in the study area is considered. In winter, the main ecological factors that determine the features of the spatial distribution and the success of wintering of grouse birds in a sharply continental climate with monsoon features are the presence and abundance of available food and the state of the snow cover. In some cases, it is deep snow that determines the success of bird wintering. At night, at extremely low temperatures and strong winds, birds die from a lack of snow cover: either the snow cover is not deep enough, or a crust is formed (when thawing / due to wind). In the spring-summer period, the main limiting factors for birds that survived the winter are weather and climatic conditions that affect the survival of clutch and young stock; natural emergencies (fires, floods, floods, etc.), diseases, anthropogenic factors, etc.


Land ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 921
Author(s):  
Yanli Han ◽  
Deyong Yu ◽  
Kelong Chen

The Qinghai Lake Basin (QLB), located in the northeastern part of the Qinghai–Tibet Plateau, has a fragile ecological environment and is sensitive to global climate change. With the progress of societal and economic development, the tourism industry in the QLB has also developed rapidly, which is bound to result in great changes in landscape patterns. In this study, we first analyzed the change characteristics of landscape patterns in the QLB from 1990 to 2018, and we then used the Markov model and the future land use simulation (FLUS) model, combined with natural, social, and ecological factors, to predict the changes in the number and spatial distribution of landscape patterns in the period between 2026 and 2034. The results of the study show that desert areas have been greatly reduced and transformed into grasslands. The grassland area expanded from 49.22% in 1990 to 59.45% in 2018, corresponding to an increase of 10.23%. The direct cause of this result is the combined effects of natural and man-made factors, with the latter playing a leading role. As such, government decision-making is crucial. Lastly, we simulated the landscape patterns in the period from 2018 to 2034. The results show that in the next 16 years, the proportion of various landscapes will change little, and the spatial distribution will be stable. This research provides a reference for the formulation of ecological environment management and protection policies in the QLB.


Author(s):  
L. D. Jackel

Most production electron beam lithography systems can pattern minimum features a few tenths of a micron across. Linewidth in these systems is usually limited by the quality of the exposing beam and by electron scattering in the resist and substrate. By using a smaller spot along with exposure techniques that minimize scattering and its effects, laboratory e-beam lithography systems can now make features hundredths of a micron wide on standard substrate material. This talk will outline sane of these high- resolution e-beam lithography techniques.We first consider parameters of the exposure process that limit resolution in organic resists. For concreteness suppose that we have a “positive” resist in which exposing electrons break bonds in the resist molecules thus increasing the exposed resist's solubility in a developer. Ihe attainable resolution is obviously limited by the overall width of the exposing beam, but the spatial distribution of the beam intensity, the beam “profile” , also contributes to the resolution. Depending on the local electron dose, more or less resist bonds are broken resulting in slower or faster dissolution in the developer.


Author(s):  
James K. Koehler ◽  
Steven G. Reed ◽  
Joao S. Silva

As part of a larger study involving the co-infection of human monocyte cultures with HIV and protozoan parasites, electron microscopic observations were made on the course of HIV replication and infection in these cells. Although several ultrastructural studies of the cytopathology associated with HIV infection have appeared, few studies have shown the details of virus production in “normal,” human monocytes/macrophages, one of the natural targets of the virus, and suspected of being a locus of quiescent virus during its long latent period. In this report, we detail some of the interactions of developing virons with the membranes and organelles of the monocyte host.Peripheral blood monocytes were prepared from buffy coats (Portland Red Cross) by Percoll gradient centrifugation, followed by adherence to cover slips. 90-95% pure monocytes were cultured in RPMI with 5% non-activated human AB serum for four days and infected with 100 TCID50/ml of HIV-1 for four hours, washed and incubated in fresh medium for 14 days.


Author(s):  
Jayesh Bellare

Seeing is believing, but only after the sample preparation technique has received a systematic study and a full record is made of the treatment the sample gets.For microstructured liquids and suspensions, fast-freeze thermal fixation and cold-stage microscopy is perhaps the least artifact-laden technique. In the double-film specimen preparation technique, a layer of liquid sample is trapped between 100- and 400-mesh polymer (polyimide, PI) coated grids. Blotting against filter paper drains excess liquid and provides a thin specimen, which is fast-frozen by plunging into liquid nitrogen. This frozen sandwich (Fig. 1) is mounted in a cooling holder and viewed in TEM.Though extremely promising for visualization of liquid microstructures, this double-film technique suffers from a) ireproducibility and nonuniformity of sample thickness, b) low yield of imageable grid squares and c) nonuniform spatial distribution of particulates, which results in fewer being imaged.


Author(s):  
Auclair Gilles ◽  
Benoit Danièle

During these last 10 years, high performance correction procedures have been developed for classical EPMA, and it is nowadays possible to obtain accurate quantitative analysis even for soft X-ray radiations. It is also possible to perform EPMA by adapting this accurate quantitative procedures to unusual applications such as the measurement of the segregation on wide areas in as-cast and sheet steel products.The main objection for analysis of segregation in steel by means of a line-scan mode is that it requires a very heavy sampling plan to make sure that the most significant points are analyzed. Moreover only local chemical information is obtained whereas mechanical properties are also dependant on the volume fraction and the spatial distribution of highly segregated zones. For these reasons we have chosen to systematically acquire X-ray calibrated mappings which give pictures similar to optical micrographs. Although mapping requires lengthy acquisition time there is a corresponding increase in the information given by image anlysis.


Author(s):  
Gary Bassell ◽  
Robert H. Singer

We have been investigating the spatial distribution of nucleic acids intracellularly using in situ hybridization. The use of non-isotopic nucleotide analogs incorporated into the DNA probe allows the detection of the probe at its site of hybridization within the cell. This approach therefore is compatible with the high resolution available by electron microscopy. Biotinated or digoxigenated probe can be detected by antibodies conjugated to colloidal gold. Because mRNA serves as a template for the probe fragments, the colloidal gold particles are detected as arrays which allow it to be unequivocally distinguished from background.


Sign in / Sign up

Export Citation Format

Share Document