Experimental Separation Performance of In-Line Piggable Liquid Removal Unit – Pseudo Dry Gas Systems

2021 ◽  
Author(s):  
Laura Liebana ◽  
Lee Thomas ◽  
Terry Wood ◽  
Liyun Lao ◽  
Graeme Rogerson

Abstract Pseudo Dry Gas (PDG) technology is proposed as an alternative concept for transporting multiphase fluids (gas, condensate and water) for long deep-water subsea tieback developments (Ref 1 - OTC-28949-MS) (Ref 2 - IPTC-19440-MS). Using PDG technology, subsea pipeline networks can be extended to excess of 200 km total length and considerably reduce the backpressure on the wells. This allows improved recovery of the reserves and the ability to reach currently stranded fields, especially deep-water lower-pressure gas fields. The basis of the PDG system is to remove the liquid of the main pipeline system using Piggable Liquid Removal Units. With the removal of the liquid, the gravitational pressure losses in the system are eliminated allowing the pipeline to operate like a "Pseudo" Dry Gas system. The liquid phase is transported back to shore using a second smaller pipeline running in parallel to the main pipeline by means of subsea liquid pumps (Ref 3 - OTC-29332-MS). After techno-economic reports were completed for a known basin of stranded gas in the West of Shetland, an Oil and Gas Technology Centre (OGTC) experimental project was established to determine the operation performance of the element within the PDG technology with lowest Technology Readiness Level (TRL). Currently the liquid removal unit has a TRL2 and a TRL4 will be achieved after the experimental testing programme has been fully completed. This paper assesses the separation performance (Efficiency) of the Piggable Liquid Units or PDG unit. Previous Flow Assurance and Computational Fluid Dynamics (CFD) established expected efficiencies between 84-99% depending on the gas and liquid flow rates and other factors such as unit orientation, liquid type, operating pressure and temperature. Each PDG unit has two modules which allow for gas-liquid separation of the multiphase fluid in the pipeline. A PDG unit prototype has been built and a testing programme has been developed and undertaken in collaboration with Cranfield University (CU) using the large scale Inclinable Multip hase Flow Loop facilities. The testing programme has two test matrices: Matrix 1 which studies the performance of a single module of the PDG unit and Matrix 2 which investigates the efficienc y of the entire PDG unit (two separation modules). Matrix 1 of the testing programme allows to characterise the system varying the flow conditions (flow regime, liquid and gas flow rates), drop out liquid level and size, effect of sand and the inclination and orientation of the unit as would be expected once installed. This paper focuses on the results obtained from Matrix 1 testing programme and compares them with the initia l PDG unit estimated efficiency values used in previous studies to demonstrate the prove of concept of the PDG technology. The overall conclusion is that the performance of the PDG liquid removal unit is greater than the ones originally used in technology assessment reports.

Author(s):  
Alberto M. Merlo ◽  
Carloandrea Malvicino ◽  
Giorgio Carpegna ◽  
Walter Ferraris ◽  
Maria L. Parodi ◽  
...  

The monitoring of several vehicle and engine operation parameters has been a key factor for the successful introduction of electronic control of the most important car performances. Among the several measured quantities, the measurement of fluid mass flow still requires sophisticated and expensive transducers, no convenient and low cost technologies having been available so far. The recent invention of the concept of bi-layer ribbons, has allowed to adjust the sensitivity of magneto-elastic sensing elements to be employed in the construction of bending sensors, in order to match their metrological properties to the wanted application. Due to their low production cost, small size and good reliability, magneto-elastic bi-layer sensors proved to be a promising technology for the large scale production of fluid flowmeters, which can be used in the automotive industry and are operated in a very wide temperature range, with temperatures spanning from −25 to 115 °C. In the present research, two main application domains have been taken into consideration namely the flow metering of the air streaming into engine air intake manifolds and the measurement of the flow rates of refrigerant fluid in the cooling loop of car air conditioning systems (HVAC). The technical feasibility of agglutinated bi-layer flow sensors, has been investigated and evaluated, by means of experimental testing under real like operating conditions. The present paper briefly describes the manufacturing process and the experimental methodologies. Preliminary results are given and future developments are foreseen, while further research guidelines are established.


1987 ◽  
Vol 20 (1) ◽  
pp. 18-25
Author(s):  
P Gilbert

The transmission and distribution system operated by British Gas plc is the largest integrated pipeline system in Europe. The whole system comprises a national transmission system which carries gas from five terminals to the twelve gas regions. Each region in turn carries the gas through a regional transmission system into a distribution grid and thence onto its customers. The national, regional and distribution system all present the instrument engineer with different technical challenges because of the way in which they have been built and are operated, however, it is simplest to characterise them by their process conditions. The operating pressure is highest in the national transmission system being up to 75 bar, in the regional transmission system the pressure is usually less than 37 bar, and in the distribution grid it is less than 7 bar. In general, the pipe diameters decrease from the national system downwards, and the measured flowrates are lowest in the distribution grids. This paper is concerned only with instrumentation on the national transmission system. The discussion will cover current technology which is typical of that being installed at present, and concentrates on the more commonly found instrumentation. The paper begins with a brief history of development of the national transmission system and a description of how it is operated. This is followed by a discussion on the application of computers to the control of unmanned installations. A section concerning the measurement of pressure and its application to the control of the system comes next. The main part of the paper contains an analysis of high accuracy flowmetering and the paper concludes with some comments on developments in instrumentation and their application to changing operation of the national transmission system.


2021 ◽  
Vol 9 (8) ◽  
pp. 831
Author(s):  
Zhuangzhuang Sun ◽  
Jie Yu ◽  
Fangping Tang

In order to study the influence of the position of the bulb on the hydraulic performance of asubmersible tubular pump device, based on a large-scale pumping station, two schemes—involving a front-mounted bulb and a rear-mounted bulb, respectively—were designed. The front-mounted scheme uses the GL-2008-03 hydraulic model and its conventional guide vane, while the rearmounted scheme uses the optimized design of a diffuser vane. The method of combining numerical simulation and experimental testing was used to analyze the differences between the external and internal characteristics of the two schemes. The results show that, under the condition of reasonable diffusion guide vane design, the efficiency under the rear-mounted scheme is higher than that under the front-mounted scheme, where the highest efficiency difference is about 1%. Although the frontmounted bulb scheme reduces the hydraulic loss of the bulb section, the placement of the bulb on the water inlet side reduces the flow conditions of the impeller. Affected by the circulation of the guide vane outlet, the hydraulic loss of the outlet channel is greater than the rear-mounted scheme. The bulb plays a rectifying function when the bulb is placed behind, which greatly eliminates the annular volume of the guide vane outlet, and the water outlet channel has a smaller hydraulic loss. In the front-mounted scheme, the water flow inside the outlet channel squeezes to the outer wall, causing higher entropy production near the outer wall area. The entropy production of the rear-mounted scheme is mainly in the bulb section and the bulb support. This research can provide reference for the design and form selection of a submersible tubular pump device, which has great engineering significance.


Author(s):  
Peter Song ◽  
Doug Lawrence ◽  
Sean Keane ◽  
Scott Ironside ◽  
Aaron Sutton

Liquids pipelines undergo pressure cycling as part of normal operations. The source of these fluctuations can be complex, but can include line start-stop during normal pipeline operations, batch pigs by-passing pump stations, product injection or delivery, and unexpected line shut-down events. One of the factors that govern potential growth of flaws by pressure cycle induced fatigue is operational pressure cycles. The severity of these pressure cycles can affect both the need and timing for an integrity assessment. A Pressure Cycling Monitoring (PCM) program was initiated at Enbridge Pipelines Inc. (Enbridge) to monitor the Pressure Cycling Severity (PCS) change with time during line operations. The PCM program has many purposes, but primary focus is to ensure the continued validity of the integrity assessment interval and for early identification of notable changes in operations resulting in fatigue damage. In conducting the PCM program, an estimated fatigue life based on one month or one quarter period of operations is plotted on the PCM graph. The estimated fatigue life is obtained by conducting fatigue analysis using Paris Law equation, a flaw with dimensions proportional to the pipe wall thickness and the outer diameter, and the operating pressure data queried from Enbridge SCADA system. This standardized estimated fatigue life calculation is a measure of the PCS. Trends in PCS overtime can potentially indicate the crack threat susceptibility the integrity assessment interval should be updated. Two examples observed on pipeline segments within Enbridge pipeline system are provided that show the PCS change over time. Conclusions are drawn for the PCM program thereafter.


2013 ◽  
Vol 11 (2) ◽  
pp. 267-276 ◽  
Author(s):  
Robert S. Donofrio ◽  
Sal Aridi ◽  
Ratul Saha ◽  
Robin Bechanko ◽  
Kevin Schaefer ◽  
...  

Obtaining an accurate assessment of a treatment system's antimicrobial efficacy in recreational water is difficult given the large scale and high flow rates of the water systems. A laboratory test system was designed to mimic the water conditions and potential microbial contaminants found in swimming pools. This system was utilized to evaluate the performance of an in situ ozone disinfection device against four microorganisms: Cryptosporidium parvum, bacteriophage MS2, Enterococcus faecium, and Pseudomonas aeruginosa. The sampling regimen evaluated the antimicrobial effectiveness in a single pass fashion, with samples being evaluated initially after exposure to the ozone unit, as well as at points downstream from the device. Based on the flow dynamics and log reductions, cycle threshold (Ct) values were calculated. The observed organism log reductions were as follows: >6.7 log for E. faecium and P. aeruginosa; >5.9 log for bacteriophage MS2; and between 2.7 and 4.1 log for C. parvum. The efficacy results indicate that the test system effectively functions as a secondary disinfection system as defined by the Centers for Disease Control and Prevention's Model Aquatic Health Code.


2016 ◽  
Vol 62 (231) ◽  
pp. 82-93 ◽  
Author(s):  
JASON M. AMUNDSON

AbstractI explore the tidewater glacier cycle with a 1-D, depth- and width-integrated flow model that includes a mass-flux calving parameterization. The parameterization is developed from mass continuity arguments and relates the calving rate to the terminus velocity and the terminus balance velocity. The model demonstrates variable sensitivity to climate. From an advanced, stable configuration, a small warming of the climate triggers a rapid retreat that causes large-scale drawdown and is enhanced by positive glacier-dynamic feedbacks. Eventually, the terminus retreats out of deep water and the terminus velocity decreases, resulting in reduced drawdown and the potential for restabilization. Terminus readvance can be initiated by cooling the climate. Terminus advance into deep water is difficult to sustain, however, due to negative feedbacks between glacier dynamics and surface mass balance. Despite uncertainty in the precise form of the parameterization, the model provides a simple explanation of the tidewater glacier cycle and can be used to evaluate the response of tidewater glaciers to climate variability. It also highlights the importance of improving parameterizations of calving rates and of incorporating sediment dynamics into tidewater glacier models.


Author(s):  
Ari Kettunen ◽  
Timo Hyppa¨nen ◽  
Ari-Pekka Kirkinen ◽  
Esa Maikkola

The main objective of this study was to investigate the load change capability and effect of the individual control variables, such as fuel, primary air and secondary air flow rates, on the dynamics of large-scale CFB boilers. The dynamics of the CFB process were examined by dynamic process tests and by simulation studies. A multi-faceted set of transient process tests were performed at a commercial 235 MWe CFB unit. Fuel reactivity and interaction between gas flow rates, solid concentration profiles and heat transfer were studied by step changes of the following controllable variables: fuel feed rate, primary air flow rate, secondary air flow rate and primary to secondary air flow ratio. Load change performance was tested using two different types of tests: open and closed loop load changes. A tailored dynamic simulator for the CFB boiler was built and fine-tuned by determining the model parameters and by validating the models of each process component against measured process data of the transient test program. The know-how about the boiler dynamics obtained from the model analysis and the developed CFB simulator were utilized in designing the control systems of three new 262 MWe CFB units, which are now under construction. Further, the simulator was applied for the control system development and transient analysis of the supercritical OTU CFB boiler.


Radiocarbon ◽  
1986 ◽  
Vol 28 (2A) ◽  
pp. 391-396 ◽  
Author(s):  
Reiner Schlitzer

The renewal of east Atlantic deep water and its large-scale circulation and mixing have been studied in observed distributions of temperature, silicate, ΣCO2, and 14C. 14C variations in northeast Atlantic deep water below 3500m depth are small. Δ14C values range from − 100‰ to −125‰. 14C bottom water concentrations decrease from Δ14C =−117‰ in the Sierra Leone Basin to Δ14C = − 123‰ in the Iberian Basin and are consistent with a mean northward bottom water flow. The characteristic of the water that flows from the west Atlantic through the Romanche Trench into the east Atlantic was determined by inspection of θ/Δ14C and θ/SiO2 diagrams. A mean potential temperature of θ = 1.50 ± .05°C was found for the inflowing water. A multi-box model including circulation, mixing, and chemical source terms in the deep water has been formulated. Linear programing and least-squares techniques have been used to obtain the transport and source parameters of the model from the observed tracer fields. Model calculations reveal an inflow through the Romanche Trench from the west Atlantic, which predominates over any other inflow, of (5 ± 2) Sv (potential temperature 1.50°C), a convective turnover of (150 ± 50) years and a vertical apparent diffusivity of (4 ± 1) cm2/s. Chemical source terms are in the expected ranges.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Nicola Caterino ◽  
Mariacristina Spizzuoco ◽  
Julian M. Londoño ◽  
Antonio Occhiuzzi

This work focuses on the issues to deal with when approaching experimental testing of structures equipped with semiactive control (SA) systems. It starts from practical experience authors gained in a recent wide campaign on a large scale steel frame structure provided with a control system based on magnetorheological dampers. The latter are special devices able to achieve a wide range of physical behaviours using low-power electrical currents. Experimental activities involving the use of controllable devices require special attention in solving specific aspects that characterize each of the three phases of the SA control loop: acquisition, processing, and command. Most of them are uncommon to any other type of structural testing. This paper emphasizes the importance of the experimental assessment of SA systems and shows how many problematic issues likely to happen in real applications are also present when testing these systems experimentally. This paper highlights several problematic aspects and illustrates how they can be addressed in order to achieve a more realistic evaluation of the effectiveness of SA control solutions. Undesired and unavoidable effects like delays and control malfunction are also remarked. A discussion on the way to reduce their incidence is also offered.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1651
Author(s):  
Jonas Bisgaard ◽  
Tannaz Tajsoleiman ◽  
Monica Muldbak ◽  
Thomas Rydal ◽  
Tue Rasmussen ◽  
...  

Due to the heterogeneous nature of large-scale fermentation processes they cannot be modelled as ideally mixed reactors, and therefore flow models are necessary to accurately represent the processes. Computational fluid dynamics (CFD) is used more and more to derive flow fields for the modelling of bioprocesses, but the computational demands associated with simulation of multiphase systems with biokinetics still limits their wide applicability. Hence, a demand for simpler flow models persists. In this study, an approach to develop data-based flow models in the form of compartment models is presented, which utilizes axial-flow rates obtained from flow-following sensor devices in combination with a proposed procedure for automatic zoning of volume. The approach requires little experimental effort and eliminates the necessity for computational determination of inter-compartmental flow rates and manual zoning. The concept has been demonstrated in a 580 L stirred vessel, of which models have been developed for two types of impellers with varying agitation intensities. The sensor device measurements were corroborated by CFD simulations, and the performance of the developed compartment models was evaluated by comparing predicted mixing times with experimentally determined mixing times. The data-based compartment models predicted the mixing times for all examined conditions with relative errors in the range of 3–27%. The deviations were ascribed to limitations in the flow-following behavior of the sensor devices, whose sizes were relatively large compared to the examined system. The approach provides a versatile and automated flow modelling platform which can be applied to large-scale bioreactors.


Sign in / Sign up

Export Citation Format

Share Document