scholarly journals Immune Cell Infiltration in Bladder Cancer

2019 ◽  
Author(s):  
shanhui liu ◽  
Lanlan Li ◽  
Shan Wu ◽  
Wei He ◽  
Jianzhong Lu ◽  
...  

Abstract Background Bladder cancer is one of the most common malignant diseases with high recurrence rates worldwide. Although immunotherapy has been applied in bladder cancer for a long period of time, the tumor-infiltrating immune cells (TIICs) in bladder cancer has not been systematical investigated. Methods CIBERSORT, a versatile computational method for quantifying cell fractions from bulk tissue gene expression profiles (GEPs), was applied to calculate the TIICs fraction proportion in normal bladder tissues and in bladder cancer tissues with the TCGA data. Results compared to normal bladder tissue, B cells naïve, T cells CD4 memory resting and Mast cells resting fractions proportion decreased, and NK resting, macrophages M0 and macrophages M1 increased. In BLCAs tissue, pro-tumorigenic related immune cells were negatively correlated with anti-tumor immune cells. New tumor with locoregional had high fraction proportion of macrophages M0 and macrophages M1. Dendritic cells activated, Monocytes, macrophages M1, Tregs and T cells follicular helper significantly increased in low grade BLCAs. Tregs had a high proportion in BLCAs patients accepted low radiation dose. Conclusions This study indicates that macrophages M2 and Tregs could be the promising immunotherapy targets combined radiotherapy in BLCAs. The result provides valuable information to understand the immunity status in BLCAs.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shi-Yao Wei ◽  
Shuang Guo ◽  
Bei Feng ◽  
Shang-Wei Ning ◽  
Xuan-Yi Du

Abstract Background IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide, and its diagnosis depends mainly on renal biopsy. However, there is no specific treatment for IgAN. Moreover, its causes and underlying molecular events require further exploration. Methods The expression profiles of GSE64306 and GSE93798 were downloaded from the Gene Expression Omnibus (GEO) database and used to identify the differential expression of miRNAs and genes, respectively. The StarBase and TransmiR databases were employed to predict target genes and transcription factors of the differentially expressed miRNAs (DE-miRNAs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to predict biological functions. A comprehensive analysis of the miRNA-mRNA regulatory network was constructed, and protein–protein interaction (PPI) networks and hub genes were identified. CIBERSORT was used to examine the immune cells in IgAN, and correlation analyses were performed between the hub genes and infiltrating immune cells. Results Four downregulated miRNAs and 16 upregulated miRNAs were identified. Forty-five and twelve target genes were identified for the upregulated and downregulated DE-miRNAs, respectively. CDKN1A, CDC23, EGR1, HIF1A, and TRIM28 were the hub genes with the highest degrees of connectivity. CIBERSORT revealed increases in the numbers of activated NK cells, M1 and M2 macrophages, CD4 naive T cells, and regulatory T cells in IgAN. Additionally, HIF1A, CDC23, TRIM28, and CDKN1A in IgAN patients were associated with immune cell infiltration. Conclusions A potential miRNA-mRNA regulatory network contributing to IgAN onset and progression was successfully established. The results of the present study may facilitate the diagnosis and treatment of IgAN by targeting established miRNA-mRNA interaction networks. Infiltrating immune cells may play significant roles in IgAN pathogenesis. Future studies on these immune cells may help guide immunotherapy for IgAN patients.


2020 ◽  
Author(s):  
Zeyu Yang ◽  
Tianjing Du ◽  
Qiao Xiong ◽  
Weiwei Zhang ◽  
Chao Wang ◽  
...  

Abstract Background The role of immune cell infiltration in tumor biology and the potential of immunotherapy for the treatment of several cancers have been proven. However, the immunogenomic landscape and immune cell infiltration need to be comprehensively analyzed in bladder cancer (BC). This study aimed to explore the immune-related genes (IRGs) in BC to create a prognostic risk assessment model and gain some insights into the molecular underpinnings of BC. Methods Based on the datasets retrieved from The Cancer Genome Atlas (TCGA) database, we identified survival-associated IRGs via univariate Cox analysis. Then, we created an immune-related gene-based prognostic factor (IRGPF) and validated it by multivariable Cox analysis. We displayed the profiles of 22 types of immune cells by using CIBERSORT and explored the relationship between IRGs and immune cell infiltration. Results Altogether, 58 differentially expressed IRGs were found to be associated with the prognosis of patients with BC. We constructed a prognostic assessment model as an IRGPF with IRGs (THBS1, CXCL9, CXCL11, FABP6, BIRC5, and PPY). Profiles of the infiltrating immune cells confirmed their significance based on clinical factors and individual differences. The IRGPF was related to immune cell infiltration, and the key gene was identified as THBS1. Conclusions Our findings confirmed that IRGs could act as independent prognostic factors and immune-driver factors. Patients with high levels of activated memory CD4 T cells but low levels of resting memory CD4 T cells had a better prognosis. This study indicates the possibility of developing new immunotherapeutic strategies and individualized treatment based on this approach.


2021 ◽  
Author(s):  
Haihang Zhang ◽  
Panpan Xie ◽  
Kaijia Shi ◽  
Danni Xu ◽  
Xingrui Cai ◽  
...  

Abstract Background: The prognostic value of N6-methylandenosine-related long non-coding RNAs (m6A-related lncRNAs) was investigated in 414 bladder cancer (BLCA) and 19 normal bladder tissue samples from The Cancer Genome Atlas (TCGA) datasets. Methods: We implemented Pearson correlation analysis to explore the lncRNAs associated with m6A, and then performed univariate Cox regression analysis to identify nine m6A-associated lncRNAs with prognostic value. The patients with BLCA were divided into two subgroups by consistency clustering. Analysis of the two groups of immune cell infiltration, immune microenvironment and clinical results were significantly different. We identified the prognostic significance of m6A-related lncRNAs by bioinformatic and statistical analysis of data from patients with BLCA.Results: We constructed an m6A-related lncRNA prognostic signature (m6A-LPS, including AL136295.2, AC104564.3, ATP1B3-AS1, EHMT2-AS1 and AC116914.2) to predict the OS of BLCA patients. It is proved that m6A LPS has independent prognostic value.


Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 109
Author(s):  
Ilan Bejar ◽  
Jacob Rubinstein ◽  
Jacob Bejar ◽  
Edmond Sabo ◽  
Hilla K Sheffer ◽  
...  

Introduction: Our previous studies showed elevated levels of Semaphorin3a (Sema3A) in the urine of patients with urothelial cancer compared to healthy patients. The aim of this study was to analyze the extent of Sema3A expression in normal and malignant urothelial tissue using immune-staining microscopic and morphometric analysis. Materials and Methods: Fifty-seven paraffin-embedded bladder samples were retrieved from our pathology archive and analyzed: 14 samples of normal urothelium, 21 samples containing low-grade urothelial carcinoma, 13 samples of patients with high-grade urothelial carcinoma, 7 samples containing muscle invasive urothelial carcinoma, and 2 samples with pure urothelial carcinoma in situ. All samples were immunostained with anti Sema3A antibodies. The area of tissue stained with Sema3A and its intensity were analyzed using computerized morphometry and compared between the samples’ groups. Results: In normal bladder tissue, very light Sema3A staining was demonstrated on the mucosal basal layer and completely disappeared on the apical layer. In low-grade tumor samples, cells in the basal layer of the mucosa were also lightly stained with Sema3A, but Seama3A expression intensified upon moving apically, reaching its highest level on apical cells exfoliating to the urine. In high grade urothelial tumors, Seama3A staining was intense in the entire thickness of the mucosa. In samples containing carcinoma in situ, staining intensity was high and homogenous in all the neoplastic cells. Conclusions: Sema3A may be serve as a potential non-invasive marker of urothelial cancer.


BMC Urology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yue Yang ◽  
Hanchao Zhang ◽  
Zhengdao Liu ◽  
Faliang Zhao ◽  
Guobiao Liang

AbstractBackgroundBladder cancer (BLCA) is a malignant urothelial carcinoma and has a high mortality rate. EPDR1 (ependymin related 1) is a type II transmembrane protein and related to calcium-dependent cell adhesion.MethodsWe explored the potential oncogenic roles of EPDR1 in BLCA basing on the multiple public datasets.ResultsWe found that EPDR1 expression had a significant difference in BLCA and adjacent normal bladder tissues, and the level of EPDR1was up-regulated with advanced tumor stage and metastasis in BLCA. Meanwhile, the high expression group of EPDR1 had a shorter OS compared to the low or medium expression-group. Furthermore, EPDR1 expression was associated with tumor-infiltrating immune cells (TIICs), including NK cells, CD8 + T cells, CD4 + T cells, Macrophages cells, and so on. Moreover, EPDR1 also involved in several signaling pathways as well as PI3K/AKT pathway, Cytokine receptor interaction, and apoptosis.ConclusionEPDR1 can be used as a novel prognostic biomarker as well as an effective target for diagnosis and treatment in BLCA.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1004
Author(s):  
Sonia Kiran ◽  
Vijay Kumar ◽  
Santosh Kumar ◽  
Robert L Price ◽  
Udai P. Singh

Obesity is characterized as a complex and multifactorial excess accretion of adipose tissue (AT) accompanied with alterations in the immune response that affects virtually all age and socioeconomic groups around the globe. The abnormal accumulation of AT leads to several metabolic diseases, including nonalcoholic fatty liver disorder (NAFLD), low-grade inflammation, type 2 diabetes mellitus (T2DM), cardiovascular disorders (CVDs), and cancer. AT is an endocrine organ composed of adipocytes and immune cells, including B-Cells, T-cells and macrophages. These immune cells secrete various cytokines and chemokines and crosstalk with adipokines to maintain metabolic homeostasis and low-grade chronic inflammation. A novel form of adipokines, microRNA (miRs), is expressed in many developing peripheral tissues, including ATs, T-cells, and macrophages, and modulates the immune response. miRs are essential for insulin resistance, maintaining the tumor microenvironment, and obesity-associated inflammation (OAI). The abnormal regulation of AT, T-cells, and macrophage miRs may change the function of different organs including the pancreas, heart, liver, and skeletal muscle. Since obesity and inflammation are closely associated, the dysregulated expression of miRs in inflammatory adipocytes, T-cells, and macrophages suggest the importance of miRs in OAI. Therefore, in this review article, we have elaborated the role of miRs as epigenetic regulators affecting adipocyte differentiation, immune response, AT browning, adipogenesis, lipid metabolism, insulin resistance (IR), glucose homeostasis, obesity, and metabolic disorders. Further, we will discuss a set of altered miRs as novel biomarkers for metabolic disease progression and therapeutic targets for obesity.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Mohamad Hatahet ◽  
Olga Y Gasheva ◽  
Valorie L Chiasson ◽  
Piyali Chatterjee ◽  
Kelsey R Bounds ◽  
...  

Preeclampsia (PE) is a pregnancy-specific hypertensive disorder characterized by vascular endothelial dysfunction and excessive immunity and inflammation. Activation of the dsRNA receptor Toll-like receptor 3 (TLR3) or the ssRNA receptor TLR7 elicits a pregnancy-dependent PE-like syndrome in mice by inducing a pro-inflammatory immune response. CD74 (MHC Class II invariant chain) acts as a chaperone for MHC Class II surface expression on immune cells during antigen presentation and is cleaved into Class II-Associated Invariant Peptide (CLIP) following polyclonal activation of immune cell TLRs. The presence of CLIP in the groove of MHC Class II prevents T cell-dependent death leading to persistent immune cell activation. We hypothesized that genetic deletion of CD74 and subsequent depletion of CLIP on immune cells prevents TLR-induced immune responses and the development of PE in mice. Pregnant WT and CD74 KO mice were given i.p. injections of normal saline (P), poly I:C (TLR3 agonist; P-PIC), or R837 (TLR7 agonist; P-R837) on gestational days 13, 15, and 17 and euthanized on day 18. P-PIC and P-R837 WT mice had significantly increased splenic levels of pro-inflammatory CD3+/gd T cells and plasma levels of the gd T cell-derived cytokines IFNg, TNFa, and IL-17 compared to P WT mice whereas P-PIC and P-R837 CD74 KO mice had significantly increased anti-inflammatory CD3+/gd T cells and no significant increases in plasma IFNg, TNFa, and IL-17 levels. P-PIC and P-R837 CD74 KO mice did not develop the hypertension (gd17 SBP in mmHg: P WT=102±3, P CD74 KO=100±3, P-PIC WT=147±4*, P-PIC CD74 KO=95±3, P-R837 WT=133±2*, P-R837 CD74 KO=97±1; *p<0.05 vs. P WT), endothelial dysfunction, proteinuria, or placental necrosis seen in P-PIC and P-R837 WT mice. In conclusion, CD74 is crucial for the development of TLR-induced PE-like symptoms in mice and CD74/CLIP depletion may be a promising therapeutic target for women with PE.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 32-33
Author(s):  
Tomohiro Aoki ◽  
Lauren C. Chong ◽  
Katsuyoshi Takata ◽  
Katy Milne ◽  
Elizabeth Chavez ◽  
...  

Introduction: Classic Hodgkin lymphoma (CHL) features a unique crosstalk between malignant cells and different types of normal immune cells in the tumor-microenvironment (TME). On the basis of histomorphologic and immunophenotypic features of the malignant Hodgkin and Reed-Sternberg (HRS) cells and infiltrating immune cells, four histological subtypes of CHL are recognized: Nodular sclerosing (NS), Mixed cellularity, Lymphocyte-rich (LR) and Lymphocyte-depleted CHL. Recently, our group described the high abundance of various types of immunosuppressive CD4+ T cells including LAG3+ and/or CTLA4+ cells in the TME of CHL using single cell RNA sequencing (scRNAseq). However, the TME of LR-CHL has not been well characterized due to the rarity of the disease. In this study, we aimed at characterizing the immune cell profile of LR-CHL at single cell resolution. METHODS: We performed scRNAseq on cell suspensions collected from lymph nodes of 28 primary CHL patients, including 11 NS, 9 MC and 8 LR samples, with 5 reactive lymph nodes (RLN) serving as normal controls. We merged the expression data from all cells (CHL and RLN) and performed batch correction and normalization. We also performed single- and multi-color immunohistochemistry (IHC) on tissue microarray (TMA) slides from the same patients. In addition, an independent validation cohort of 31 pre-treatment LR-CHL samples assembled on a TMA, were also evaluated by IHC. Results: A total of 23 phenotypic cell clusters were identified using unsupervised clustering (PhenoGraph). We assigned each cluster to a cell type based on the expression of genes described in published transcriptome data of sorted immune cells and known canonical markers. While most immune cell phenotypes were present in all pathological subtypes, we observed a lower abundance of regulatory T cells (Tregs) in LR-CHL in comparison to the other CHL subtypes. Conversely, we found that B cells were enriched in LR-CHL when compared to the other subtypes and specifically, all four naïve B-cell clusters were quantitatively dominated by cells derived from the LR-CHL samples. T follicular helper (TFH) cells support antibody response and differentiation of B cells. Our data show the preferential enrichment of TFH in LR-CHL as compared to other CHL subtypes, but TFH cells were still less frequent compared to RLN. Of note, Chemokine C-X-C motif ligand 13 (CXCL13) was identified as the most up-regulated gene in LR compared to RLN. CXCL13, which is a ligand of C-X-C motif receptor 5 (CXCR5) is well known as a B-cell attractant via the CXCR5-CXCL13 axis. Analyzing co-expression patterns on the single cell level revealed that the majority of CXCL13+ T cells co-expressed PD-1 and ICOS, which is known as a universal TFH marker, but co-expression of CXCR5, another common TFH marker, was variable. Notably, classical TFH cells co-expressing CXCR5 and PD-1 were significantly enriched in RLN, whereas PD-1+ CXCL13+ CXCR5- CD4+ T cells were significantly enriched in LR-CHL. These co-expression patterns were validated using flow cytometry. Moreover, the expression of CXCR5 on naïve B cells in the TME was increased in LR-CHL compared to the other CHL subtypes We next sought to understand the spatial relationship between CXCL13+ T cells and malignant HRS cells. IHC of all cases revealed that CXCL13+ T cells were significantly enriched in the LR-CHL TME compared to other subtypes of CHL, and 46% of the LR-CHL cases showed CXCL13+ T cell rosettes closely surrounding HRS cells. Since PD-1+ T cell rosettes are known as a specific feature of LR-CHL, we confirmed co-expression of PD-1 in the rosetting cells by IHC in these cases. Conclusions: Our results reveal a unique TME composition in LR-CHL. LR-CHL seems to be distinctly characterized among the CHL subtypes by enrichment of CXCR5+ naïve B cells and CD4+ CXCL13+ PD-1+ T cells, indicating the importance of the CXCR5-CXCL13 axis in the pathogenesis of LR-CHL. Figure Disclosures Savage: BeiGene: Other: Steering Committee; Merck, BMS, Seattle Genetics, Gilead, AstraZeneca, AbbVie: Honoraria; Roche (institutional): Research Funding; Merck, BMS, Seattle Genetics, Gilead, AstraZeneca, AbbVie, Servier: Consultancy. Scott:Janssen: Consultancy, Research Funding; Celgene: Consultancy; NanoString: Patents & Royalties: Named inventor on a patent licensed to NanoString, Research Funding; NIH: Consultancy, Other: Co-inventor on a patent related to the MCL35 assay filed at the National Institutes of Health, United States of America.; Roche/Genentech: Research Funding; Abbvie: Consultancy; AstraZeneca: Consultancy. Steidl:AbbVie: Consultancy; Roche: Consultancy; Curis Inc: Consultancy; Juno Therapeutics: Consultancy; Bayer: Consultancy; Seattle Genetics: Consultancy; Bristol-Myers Squibb: Research Funding.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A55-A55
Author(s):  
Dannah Miller ◽  
Huong Nguyen ◽  
Kate Hieber ◽  
Charles Caldwell ◽  
Roberto Gianani

BackgroundImmune cells within the tumor microenvironment (TME) play a vital role in regulating tumor progression. Therefore, immunotherapies that stimulate anti-tumor responses are of great interest for the treatment of various cancers. PD-L1 expression on immune cells is positively correlated with increased patient survival. Our hypothesis is that non-small cell lung carcinoma (NSCLC) and colorectal cancer (CRC) patients with high immune infiltration and greater amounts of anti-tumor immune cells within the tumor compartment have an increased time of survival compared to cancers with immune excluded or immune desert environments.MethodsOne NSCLC and one CRC tumor microarray (TMA) containing primary tumors, metastases, and normal tissue were stained via multiplex immunofluorescence (mIF) for 6 different immune markers: CD3, CD8, CD56, CD68, CD163, and PD-L1. This multiplex panel was designed to evaluate the immune cell population as well as tumor and immune cell PD-L1 status to aid in research for immunotherapies, specifically anti-PD-L1 therapies. The stained TMAs were analyzed utilizing Flagship Biosciences’ proprietary image analysis platform. Machine learning algorithms stratified cells as belonging to the tumoral or stromal space based on their cellular features. Core level expression data was pulled and represented on a whole-cohort basis. All staining and image analysis outputs were reviewed by a board-certified, MD pathologist. Kaplan-meier curves were generated based on survival data in relation to the levels of immune cells present within the tumor cores as well as the percentage of immune cells infiltrating into the tumor.ResultsThere is a clear correlation between patient survival and the presence or absence of various types of immune cells, including helper T cells, cytotoxic T cells, M1 macrophages, M2, macrophages, NK cells, as well as PDL1 expression on tumor and immune cells. Specifically, the increased presence of anti-tumor immune cells as well as increased expression of PD-L1 on immune cells within the tumor compartment correlates with an increase in patient survival.ConclusionsData generated through Flagship Biosciences’ image analysis platform showed a strong relationship between immune cell presence and localization and NSCLC and CRC patient survival. Altering the immune cells within the tumor to an anti-tumor immune environment could increase patient survival times. Combining immune checkpoint inhibitors with current FDA approved therapies for NSCLC and CRC are of interest to further extend patient survival. Further, utilizing Flagship Biosciences’ image analysis software to understand cancer immune microenvironments should be further utilized to aid in diagnosis and treatment decisions.


Sign in / Sign up

Export Citation Format

Share Document