scholarly journals Effects of levamisole on haematological and oxidative stress parameters in packed donkeys

Author(s):  
Babatunde Folayemi Okaiyeto ◽  
Anthony Kojo Sackey ◽  
Abdullahi Koko Mohammed ◽  
Tangang Aluwong

Abstract Stress can be caused by psychological, physiological, environmental and physical factors. Strenuous exercise like packing in donkeys modifies haematologic parameters. The aim of the study was to investigate the ameliorative effects of levamisole on stress, in packed donkeys. 15 adult male donkeys aged between 4 – 5 years were selected for this study, divided into groups (A, B, C) of five donkeys each: Groups A and B donkeys were the apparently healthy group; while Group C donkeys were naturally infected with Strongyle spp. All the donkeys participated in load carrying (packing) of 40 kg for 10 km. Groups B and C were treated with levamisole at 7.5 mg/kg, while Group A received no treatment prior to packing. Blood was collected from all the groups for haemogram and oxidative stress biomarker analyses. No significant effect (P > 0.05) was observed between groups: A, B and C for: respiratory rate, pulse rate and rectal temperature; haemogram, and activities of malondialdehyde concentration, superoxide dismutase and catalase. Erythrocyte membranes were osmotically stable at 0.5% NaCl in the treated group in comparison to the controls. Packing of donkeys for 10 km did not induce significant changes in vital parameters, haemogram and biomarkers of oxidative stress, but levamisole improved erythrocyte membrane stability. It was concluded that packing for 10 km did not induce any significant changes in blood cellular components and biomarker of oxidative stress, but levamisole improved erythrocyte membrane stability.

Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1634 ◽  
Author(s):  
Khrystyna O. Semen ◽  
Antje R. Weseler ◽  
Marcel J. W. Janssen ◽  
Marie-José Drittij-Reijnders ◽  
Jos L. M. L. le Noble ◽  
...  

Nonsteroidal anti-inflammatory drugs are frequently used by athletes in order to prevent musculoskeletal pain and improve performance. In combination with strenuous exercise, they can contribute to a reduction of renal blood flow and promote development of kidney damage. We aimed to investigate whether monomeric and oligomeric flavanols (MOF) could reduce the severity of kidney injuries associated with the intake of 400-mg ibuprofen followed by the completion of a half-marathon in recreational athletes. In this double-blind, randomized study, the original MOF blend of extracts from grape seeds (Vitis vinifera L.) and pine bark (Pinus pinaster L.) or placebo were taken for 14 days preceding the ibuprofen/half-marathon. Urine samples were collected before and after the ibuprofen/half-marathon, and biomarkers of kidney injury, inflammation and oxidative stress were assessed. Intake of MOF significantly reduced the incidence of post-race hematuria (p = 0.0004) and lowered concentrations of interleukin (IL)-6 in the urine (p = 0.032). Urinary neutrophil-associated lipocalin, creatine, albumin, IL-8 and malondialdehyde tended to decrease. The supplementation with MOF in recreational runners appears to safely preserve kidney function, reduce inflammation and promote antioxidant defense during strenuous exercise and intake of a single dose of ibuprofen.


Author(s):  
Kurmeti Sudhakar ◽  
Mesram Nageshwar ◽  
Pratap Reddy K

  Objective: This study reports protective effect of Abelmoschus moschatus seed extract against sodium fluoride-induced neurodegeneration through oxidative stress, neurohistological, and behavioral observations in Wistar rats.Methods: A total of 20 Wistar rats (around 250 g) were randomly classified into four groups, namely, control, fluoride (NaF), fluoride + A. moschatus seed aqueous extract (AMAE), and fluoride + A. moschatus seed ethanol extract (AMEE). The control group animals received normal tap water, fluoride group received fluoridated water at the rate of 40 mg/kg b. wt., 3rd group rats treated with fluoride (40 mg/kg b. wt.) + AMAE (300 mg/kg b. wt.), and 4th group rats treated with fluoride (40 mg/kg b. wt.) + AMEE (300 mg/kg b. wt.). Neurobehavioral responses of rotarod, hot plate, and maze learning tests and oxidantive stress markers including lipid peroxidation (LPO), GSH levels, superoxide dismutase, CAT, and GSH peroxidase (GPx) activities, and also histology with H and E as well as congo red staining were studied in control, fluoride, and A. moschatus seed extract treated against fluoride groups.Results: Decreased neurobehavioral responses with rotarod, hot plate, and maze and enhanced LPO (p<0.05) levels were found in fluoride received animals. Whereas, the superoxide dismutase (SOD), CAT, GSH, and GPx were decreased (p<0.05) in NaF treatment. The rats received seed extract along with NaF showed significant reversal of behavioral and oxidative stress markers and the effect of ethanol extract was more pronounced than aqueous extract. The fluoride-treated group showed disturbed cell structure and reduced number of cells in H and E as well as congo red staining which was reversed in cell morphology and restored cell number in seed extract against NaF-treated group. As a result of increased LPO, decreased antioxidant system, and decreased number of cells, neurodegeneration was observed resulting in the disturbance in functions associated with reported behavior.Conclusion: Okra with high antioxidants activity, seed extract showed reversal of LPO levels and antioxidant status in the brain tissue. And also plant extract administered rats displayed normal cell structure and number of cells than only fluoride received group. Therefore, the aqueous and ethanolic extract of A. moschatus plant seeds has neuroprotective effects against fluoride-induced motor, nociceptive, learning behavior, and on histological structure of brain through antioxidant mechanism. The ethanol extract has shown more efficacy than aqueous extract.


2019 ◽  
Vol 20 (20) ◽  
pp. 5220 ◽  
Author(s):  
Po-Shuan Huang ◽  
Chia-Siu Wang ◽  
Chau-Ting Yeh ◽  
Kwang-Huei Lin

Oxidative stress occurs as a result of imbalance between the generation of reactive oxygen species (ROS) and antioxidant genes in cells, causing damage to lipids, proteins, and DNA. Accumulating damage of cellular components can trigger various diseases, including metabolic syndrome and cancer. Over the past few years, the physiological significance of microRNAs (miRNA) in cancer has been a focus of comprehensive research. In view of the extensive level of miRNA interference in biological processes, the roles of miRNAs in oxidative stress and their relevance in physiological processes have recently become a subject of interest. In-depth research is underway to specifically address the direct or indirect relationships of oxidative stress-induced miRNAs in liver cancer and the potential involvement of the thyroid hormone in these processes. While studies on thyroid hormone in liver cancer are abundantly documented, no conclusive information on the potential relationships among thyroid hormone, specific miRNAs, and oxidative stress in liver cancer is available. In this review, we discuss the effects of thyroid hormone on oxidative stress-related miRNAs that potentially have a positive or negative impact on liver cancer. Additionally, supporting evidence from clinical and animal experiments is provided.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Subhankari Prasad Chakraborty ◽  
Panchanan Pramanik ◽  
Somenath Roy

Staphylococcus aureus infection causes oxidative stress in neutrophils. The immune cells use reactive oxygen species (ROS) for carrying out their normal functions while an excess amount of ROS can attack cellular components that lead to cell damage. The present study was aimed to test the protective role of nanoconjugated vancomycin against vancomycin-sensitive Staphylococcus aureus (VSSA) and vancomycin-resistant Staphylococcus aureus (VRSA) infection induced oxidative stress in neutrophils. VSSA- and VRSA-infection were developed in Swiss mice by intraperitoneal injection of 5×106 CFU/mL bacterial solutions. Nanoconjugated vancomycin was treated to VSSA- and VRSA-infected mice at its effective dose for 10 days. Vancomycin was treated to VSSA and VRSA infected mice at similar dose, respectively, for 10 days. The result reveals that in vivo VSSA and VRSA infection significantly increases the level of lipid peroxidation, protein oxidation, oxidized glutathione level, and nitrite generation and decreases the level of reduced glutathione, antioxidant enzyme status, and glutathione-dependent enzymes as compared to control group; which were increased or decreased significantly near to normal in nanoconjugated vancomycin-treated group. These finding suggests the potential use and beneficial protective role of nanoconjugated vancomycin against VSSA and VRSA infection induced oxidative imbalance in neutrophils.


2017 ◽  
Vol 124 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Abhishek Kumar Singh ◽  
Sandeep Singh ◽  
Geetika Garg ◽  
Syed Ibrahim Rizvi

2011 ◽  
Vol 30 (10) ◽  
pp. 1626-1634 ◽  
Author(s):  
Amit K Sharma ◽  
Swapan K Bhattacharya ◽  
Naresh Khanna ◽  
Ashok K Tripathi ◽  
Tarun Arora ◽  
...  

Progesterone (a neurosteroid) is an important modulator of the nervous system functioning. Organophosphorus pesticides like phosphamidon have been shown to adversely affect memory and induce oxidative stress on both acute and chronic exposure. The present study was therefore designed to investigate the effects of progesterone (PROG) on phosphamidon-induced modulation of cognitive function and oxidative stress in rats. Cognitive function was assessed using step-down latency (SDL) on a passive avoidance apparatus and transfer latency (TL) on an elevated plus maze. Oxidative stress was assessed by examining the levels of thiobarbituric acid reactive species (TBARS) and non-protein thiols (NP-SH) in isolated homogenized whole brain samples. The results showed a significant reduction in SDL and prolongation of TL in the phosphamidon (1.74 mg/kg/d; p.o.) treated group at weeks 6 and 8 as compared to the control group. Two weeks treatment with PROG (15 mg/kg/d; i.p.) antagonized the effect of phosphamidon on SDL as well as TL. Phosphamidon alone produced a significant increase in the brain TBARS levels and decrease in the brain NP-SH levels. Treatment with PROG (15 mg/kg/d; i.p.) attenuated the effect of phosphamidon on oxidative stress. Together, the results showed that progesterone attenuated the cognitive dysfunction and increased oxidative stress induced by phosphamidon in the brain.


Author(s):  
Tijani Stephanie Abiola ◽  
Olori Ogaraya David ◽  
Farombi Ebenezer Olatunde

Aim: Manganese (Mn) is an essential trace element in many cellular processes. However, there is dearth of literature on its influence on indomethacin-induced hepatorenal damage. Therefore, this study was conducted to investigate the effect of manganese on indomethacin-induced hepatorenal damage in rats. Methods: Rats were divided into four groups of eight rats consisting of control group, indomethacin (IND) alone (20 mg/kg), Mn alone (10 mg/kg) and co-treated group that were treated orally for 14 consecutive days. Twenty four hours after treatment, under pentobarbital anesthesia, blood was collected and liver was excised to prepare homogenate and histology staining. Liver and kidney function tests aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), glutamine dehydrogenase (GLDH), sorbitol dehydrogenase (SDH), glucose-6-phosphate dehydrogenase (G6PD), bilirubin (BIL), urea, creatinine, cholesterol (CHOL), triglycerides (TG), low and high density lipoprotein (LDL and HDL), electrolytes and oxidative stress superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and lipid peroxidation (LPO) biomarkers were assessed. Results: The results showed that indomethacin caused hepatorenal damage in rats manifested with increase in serum hepatic and renal function biomarkers. But co-administration of IND with Mn significantly (p < 0.05) decreased the level of hepatorenal biomarkers. Additionally, co-administration of IND with Mn improved the antioxidant status with concomitant reduction of LPO and restored the integrity of the liver and kidney histologically. Conclusion: The results of this study emphasize that co-administration of IND with Mn to rats alleviated IND-induced hepatorenal toxicities and oxidative stress in rats.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Xiaoguang Liu ◽  
Weihua Xiao ◽  
Lifang Zhen ◽  
Yongzhan Zhou ◽  
Jian Shou

Objective Skeletal muscle contusion is one of the most common muscle injury in sports medicine and traumatology. Bone marrow mesenchymal stem cells (BMSCs) transplantation is a promising strategy for muscle regeneration. However, the roles of BMSCs, especially the mechanisms involved, in the regeneration of contused skeletal muscle are still not fully recognized. The aim of the study is to evaluate the potential of BMSCs transplantation for muscle regeneration and mechanisms involved after contusion. Methods Ninety-nine C57BL/6J mice were divided into three groups: control group (n=11), muscle contusion and BMSCs treated group (n=44), muscle contusion and sham treated group (n=44). BMSCs were immediately transplanted into gastrocnemius muscles (GMs) following direct contusion. At different time points (3, 6, 12 and 24 days) post-injury, the animals were killed and then GMs were harvested. Morphological and gene expression analyses were used to elevate the effect of BMSCs transplantation and mechanisms involved. Results The results indicate that BMSCs transplantation impairs muscle regeneration, as well as more fibrotic scar formation after skeletal muscle contusion. Furthermore, macrophages, inflammatory cytokines, chemokines, matrix metalloproteinases and oxidative stress related enzymes were significantly increased after BMSCs transplantation. These results suggest that BMSCs transplantation impairs skeletal muscle regeneration and that macrophages, inflammatory cytokines, chemokines, matrix metalloproteinases and oxidative stress related enzymes may be involved in the process. Conclusions BMSCs transplantation aggravates inflammation, oxidative stress and fibrosis, and impairs skeletal muscle regeneration, which shed new light on the role of BMSCs in regenerative medicine and cautions the application of BMSCs for muscle injury.


2019 ◽  
Vol 17 (2) ◽  
pp. 127 ◽  
Author(s):  
Khadijeh Mirzaei Khorramabadi ◽  
Ali Reza Talebi ◽  
Abolghasem Abbasi Sarcheshmeh ◽  
Aghdas Mirjalili

Background: Generation of free radicals and oxidative stress are a major contributorto diabetes. These factors lead to the development of diabetic testicles disorders.Objective: In this study, the protective effect of vitamin E on functional disordersassociated with diabetes induced oxidative stress in male reproductive systems hasbeen investigated.Materials and Methods: Thirty-three adult male Mice were divided into control,diabetic, and untreated diabetic groups. Streptozotocin was used to induce diabetes.In the treated group, vitamin E was given to the Mice intraperitoneally for 30 days.Then, animals were anesthetized and sacrificed. Animal testicles were isolated andhomogenized in phosphate buffer and used for measuring sperm count, motility andsurvival of sperm, MDA concentration and antioxidant capacity (TAC). Apoptosis wasalso performed with the TUNEL test.Results: The results of reduction (12.03±98.11) TAC, MDA concentration (–28.5±2.58),sperm motility (unstable sperma= 86.4±7.48), sperm count (171.51), Sperm morphology(natural morphology= 49.69±31.93) and abnormal morphology (9.77±49.7)with increased oxidative damage. These changes were statistically significant incomparison with the control group for all variables other than MDA (p= 0.05). Treatmentof vitamin E diabetic Mice improved the ability of antioxidants to prevent oxidativedamage in the testicles, restore the sperm movement, and increase the number ofnormal sperm as well as TAC. The level of apoptosis in the treated group has decreasedcompared to the untreated group.Conclusion: Vitamin E protects the reproductive system against diabetes mellitus.Therefore, it was concluded that vitamin E may be a suitable agent for protecting thesperm and testicular parameters against undesirable effects of diabetes.


2020 ◽  
Vol 2020 ◽  
pp. 1-22 ◽  
Author(s):  
Andy W. C. Man ◽  
Huige Li ◽  
Ning Xia

Healthy lifestyle and diet are associated with significant reduction in risk of obesity, type 2 diabetes, and cardiovascular diseases. Oxidative stress and the imbalance between prooxidants and antioxidants are linked to cardiovascular and metabolic diseases. Changes in antioxidant capacity of the body may lead to oxidative stress and vascular dysfunction. Diet is an important source of antioxidants, while exercise offers many health benefits as well. Recent findings have evidenced that diet and physical factors are correlated to oxidative stress. Diet and physical factors have debatable roles in modulating oxidative stress and effects on the endothelium. Since endothelium and oxidative stress play critical roles in cardiovascular and metabolic diseases, dietary and physical factors could have significant implications on prevention of the diseases. This review is aimed at summarizing the current knowledge on the impact of diet manipulation and physical factors on endothelium and oxidative stress, focusing on cardiovascular and metabolic diseases. We discuss the friend-and-foe role of dietary modification (including different diet styles, calorie restriction, and nutrient supplementation) on endothelium and oxidative stress, as well as the potential benefits and concerns of physical activity and exercise on endothelium and oxidative stress. A fine balance between oxidative stress and antioxidants is important for normal functions in the cells and interfering with this balance may lead to unfavorable effects. Further studies are needed to identify the best diet composition and exercise intensity.


Sign in / Sign up

Export Citation Format

Share Document