Differential Occurrence of Cuticular Wax and Its Role In Leaf Tissues of Three Edible Aroids of Northeast India

Author(s):  
Facundo Pieniazek ◽  
Madhumita Dasgupta ◽  
Valeria Messina ◽  
Manas Ranjan Sahoo

Abstract Localization of cuticular wax (CW) on the leaf epidermis and its interaction with physiological mechanisms of three edible aroids, Alocasia, Colocasia, and Xanthosoma, were assessed. Scanning electron microscopy depicted the occurrence of CW in the leaf tissues, which was higher in Colocasia (10.61 mg dm-2) and Xanthosoma (11.36 mg dm-2) than in Alocasia (1.36 mg dm-2). Higher CW in Colocasia and Xanthosoma strengthened leaf epidermis and improved the physiological processes compared to Alocasia. CW acted as a protecting barrier against deleterious solar radiation in terms of sun protection factor (SPF). The glossy appearance of wax crystals in the Alocasia leaf cuticles resulted in higher SPF. The occurrence of CW was directly related to leaf chlorophyll stability, moisture retention ability, and cellular membrane integrity in the leaf tissues. Colocasia exhibited superhydrophobic properties with higher static contact angle (CA) >150o than hydrophobic Xanthosoma, and Alocasia with CA ranged between 99.0o to 128.7o. Colocasia CW highly influenced the qualitative and protective mechanisms of the leaf. Aroids are the cheapest sources of edible CW among the terrestrial plants, which could be used in food, agricultural and industrial applications.

2021 ◽  
Author(s):  
Facundo Pieniazek ◽  
Madhumita Dasgupta ◽  
Valeria Messina ◽  
Manas Ranjan Sahoo

Abstract Localization of epicuticular wax (EW) content in leaf tissues and its interaction on leaf protective mechanisms of three edible aroids, Alocasia, Colocasia and Xanthosoma were assessed. Scanning electron microscopy depicted the occurrence of EW in leaf tissues which was higher in Colocasia (10.61 mg dm-2) and Xanthosoma (11.36 mg dm-2) than in Alocasia (1.36 mg dm-2). The result highlighted the interface of EW between the leaves and its internal and external environments. EW acted as a protecting barrier against deleterious solar radiation in term of sun protecting factor (SPF). Occurrence of EW also effectively managed leaf pigmentation, moisture retention, cellular membrane integrity against the invaders. Colocasia exhibited superhydrophobic properties with higher static contact angle (CA) >150o than hydrophobic Xanthosoma and Alocasia with CA ranged between 99.0o to 128.7o. Colocasia EW highly influenced the qualitative and protective mechanisms of leaf. Aroids are the cheapest sources of edible EW among the terrestrial plants could be used in food, agricultural and industrial applications.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Fengqing Han ◽  
Jingjing Huang ◽  
Qi Xie ◽  
Yumei Liu ◽  
Zhiyuan Fang ◽  
...  

Abstract Background The aerial organs of most terrestrial plants are covered by cuticular waxes, which impart plants a glaucous appearance and play important roles in protecting against various biotic and abiotic stresses. Despite many glossy green (wax-defective) mutants being well characterized in model plants, little is known about the genetic basis of glossy green mutant in broccoli. Results B156 is a spontaneous broccoli mutant showing a glossy green phenotype. Detection by scanning electron microscopy (SEM) and chromatography-mass spectrometry (GC-MS) revealed that B156 is a cuticular wax-defective mutant, lacking waxes mostly longer than C28. Inheritance analysis revealed that this trait was controlled by a single recessive gene, BoGL5. Whole-genome InDel markers were developed, and a segregating F2 population was constructed to map BoGL5. Ultimately, BoGL5 was mapped to a 94.1 kb interval on C01. The BoCER2 gene, which is homologous to the Arabidopsis CER2 gene, was identified as a candidate of BoGL5 from the target interval. Sequence analyses revealed that Bocer2 in B156 harbored a G-to-T SNP mutation at the 485th nucleotide of the CDS, resulting in a W-to-L transition at the 162nd amino acid, a conserved site adjacent to an HXXXD motif of the deduced protein sequence. Expression analysis revealed that BoCER2 was significantly down-regulated in the leaves, stems, and siliques of B156 mutant than that of B3. Last, ectopic expression of BoCER2 in A. thaliana could, whereas Bocer2 could not, rescue the phenotype of cer2 mutant. Conclusions Overall, this study mapped the locus determining glossy phenotype of B156 and proved BoCER2 is functional gene involved in cuticular wax biosynthesis which would promotes the utilization of BoCER2 to enhance plant resistance to biotic and abiotic stresses, and breeding of B. oleracea cultivars with glossy traits.


Author(s):  
Mukesh Kumar Meena ◽  
Balraj Krishnan Tudu ◽  
Aditya Kumar ◽  
Bharat Bhushan

In this study, a superhydrophobic coating on steel surface has been developed with polyurethane, SiO 2 nanoparticles and hexadecyltrimethoxysilane by using a spin-coating technique. Characterization of the coated steel surface was done by using the contact angle measurement technique, scanning electron microscopy and Fourier transform infrared spectroscopy. With a water tilt angle of 4° ± 2° and static contact angle of 165° ± 5°, the coated surface shows a superhydrophobic and self-cleaning nature. Chemical, thermal, mechanical stability tests and droplet dynamic studies were done to evaluate performance of the coating. Excellent self-cleaning, anti-fogging and anti-corrosion properties of coated steel surfaces make them ideal for industrial applications. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology (part 3)’.


2019 ◽  
Vol 104 (1) ◽  
pp. 51-65 ◽  
Author(s):  
Ningzi Guan ◽  
Long Liu

AbstractMicroorganisms encounter acid stress during multiple bioprocesses. Microbial species have therefore developed a variety of resistance mechanisms. The damage caused by acidic environments is mitigated through the maintenance of pH homeostasis, cell membrane integrity and fluidity, metabolic regulation, and macromolecule repair. The acid tolerance mechanisms can be used to protect probiotics against gastric acids during the process of food intake, and can enhance the biosynthesis of organic acids. The combination of systems and synthetic biology technologies offers new and wide prospects for the industrial applications of microbial acid tolerance mechanisms. In this review, we summarize acid stress response mechanisms of microbial cells, illustrate the application of microbial acid tolerance in industry, and prospect the introduction of systems and synthetic biology to further explore the acid tolerance mechanisms and construct a microbial cell factory for valuable chemicals.


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 970 ◽  
Author(s):  
Yan Yang ◽  
Min-Zhi Liu ◽  
Yun-Song Cao ◽  
Chang-Kun Li ◽  
Wei Wang

Multienzyme whole-cell biocatalysts are preferred in industrial applications, and two major concerns regarding the use of these biocatalysts, cell viability and cell membrane integrity, must be addressed. In this work, the transformation of myricetin to myricetin-7-O-glucuronide catalyzed by an engineered Escherichia coli strain was taken as the model reaction to examine the impacts of low-level organic solvents on whole-cell biocatalysis. Low-level organic solvents (2%, v/v) showed a significant increase (roughly 13-fold) in myricetin-7-O-glucuronide yields. No obvious compromises of cellular viability and integrity were observed by a flow cytometry assay or in the determination of extracellular protein leakage, suggesting the addition of low-level organic solvents accommodates whole E. coli cells. Furthermore, a scaled-up reaction was conducted to test the capability and efficiency of whole-cell catalysis in the presence of organic solvents. This study presents a promising and simple means to enhance the productivity of multienzyme whole-cell catalysis without losing the barrier functions of the cell membrane.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2023 ◽  
Author(s):  
María Belén Estevez ◽  
Sofía Raffaelli ◽  
Scott G. Mitchell ◽  
Ricardo Faccio ◽  
Silvana Alborés

Microorganisms offer an alternative green and scalable technology for the synthesis of value added products. Fungi secrete high quantities of bioactive substances, which play dual-functional roles as both reducing and stabilizing agents in the synthesis of colloidal metal nanoparticles such as silver nanoparticles, which display potent antimicrobial properties that can be harnessed for a number of industrial applications. The aim of this work was the production of silver nanoparticles using the extracellular cell free extracts of Phanerochaete chrysosporium, and to evaluate their activity as antimicrobial and antibiofilm agents. The 45–nm diameter silver nanoparticles synthesized using this methodology possessed a high negative surface charge close to −30 mV and showed colloidal stability from pH 3–9 and under conditions of high ionic strength ([NaCl] = 10–500 mM). A combination of environmental SEM, TEM, and confocal Raman microscopy was used to study the nanoparticle-E. coli interactions to gain a first insight into their antimicrobial mechanisms. Raman data demonstrate a significant decrease in the fatty acid content of E. coli cells, which suggests a loss of the cell membrane integrity after exposure to the PchNPs, which is also commensurate with ESEM and TEM images. Additionally, these biogenic PchNPs displayed biofilm disruption activity for the eradication of E. coli and C. albicans biofilms.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2294 ◽  
Author(s):  
Jeong-Mi Do ◽  
Seung-Woo Jo ◽  
Il-Sup Kim ◽  
Ho Na ◽  
Jae Hak Lee ◽  
...  

Water scarcity and emerging demands for renewable energy have increased concerns about energy security and advanced wastewater treatment, and microalgae have emerged as promising candidates to solve these problems. This study assesses the feasibility of microalgal wastewater treatment, and the utilization of the resulting microalgal biomass, as a renewable energy source. We cultured four selected microalgal species in filtered wastewater collected from the municipal treatment facility in Daegu, Republic of Korea. We measured nutrient consumption, growth rate, and physicochemical properties during cultivation, then analyzed the biomass for biochemical composition, ultimate analysis, proximate analysis, and biodiesel and lubricant properties, to estimate its potential applications. Desmodesmus sp. KNUA024 emerged as the most promising strain, removing 99.10% of ammonia nitrogen, 91.31% of total nitrogen, and 95.67% of total phosphate. Its biomass had a calorific value of 19.5 MJ kg−1, similar to terrestrial plants. α-linolenic acid was the most abundant polyunsaturated fatty acid (PUFA; 54.83%). Due to its PUFA content, Desmodesmus sp. KNUA024 also had a high iodine value, indicating its potential for use as a bio-lubricant. Therefore, Desmodesmus sp. KNUA024 shows promise for wastewater treatment, energy, and industrial applications.


Antioxidants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 67 ◽  
Author(s):  
Grisaly García ◽  
María José Clemente-Moreno ◽  
Pedro Díaz-Vivancos ◽  
Marina García ◽  
José Antonio Hernández

The response of apoplastic antioxidant systems in root and leaf tissues from two onion genotypes (‘Texas 502’, salt-sensitive and ‘Granex 429’, salt-resistant) in response to salinity was studied. Electrolyte leakage data indicated the membrane integrity impairing by the effect of salts, especially in ‘Texas 502’. We detected superoxide dismutase (SOD) and peroxidase (POX) activity in the root and leaf apoplastic fractions from onion plants. Salinity increased SOD activity in the root symplast of ‘Texas 502’ and in ‘Granex 429’ leaves. In contrast, salinity reduced SOD activity in the leaf and root apoplastic fractions from ‘Texas 502’. In ‘Granex 429’, salt-stress increased leaf apoplastic POX activity and symplastic catalase (CAT) activity of both organs, but a decline in root apoplastic POX from ‘Texas 502’ took place. Salt-stress increased monodehydroascorbate reductase (MDHAR) in root and leaf symplast and in root glutathione reductase GR, mainly in ‘Granex 429’, but only in this genotype, leaf dehydroascorbate reductase (DHAR) activity increased. In contrast, a decline in leaf GR was produced only in ‘Texas 502’. Salinity increased leaf ASC levels, and no accumulation of dehydroascorbate (DHA) was observed in roots in both cases. These responses increased the redox state of ascorbate, especially in roots. In contrast, salinity declined reduced glutathione (GSH), but oxidised glutathione (GSSG) was accumulated in leaves, decreasing the redox state of glutathione. Salinity slightly increased root GSH concentration in the salt-tolerant genotype and was unchanged in the salt-sensitive genotype, but no accumulation of GSSG was produced, favoring the rise and/or maintenance of the redox state of the glutathione. These results suggest that the lower sensitivity to salt in ‘Granex 429’ could be related to a better performance of the antioxidant machinery under salinity conditions.


2021 ◽  
Author(s):  
Guo-Ming Shen ◽  
Hong-Qin Shang ◽  
Zhi-Wei Chen ◽  
Yu Lu ◽  
Ming Zhang ◽  
...  

Abstract Di-(2-ethylhexyl) phthalate (DEHP) as plasticizer is widely used in the modern plastic manufacturing industry, DEHP and its breakdown products have been identified as a global environmental contaminant. Vegetables and crops which are the energy sources of human beings are often expose to DEHP, which enriched in humans through the food chain, resulting in many diseases. The content distribution of DEHP in leaf cuticular waxes and tissues of 14 plants including vegetables and crops, and in various parts of cells of 4 plants were investigated by Gas Chromatography-Mass Spectromete (GC-MS). The results show the stronger the DEHP uptake ability of the plant the less ratio of DEHP in leaf cuticular wax occupying the total DEHP in the leaves of the plant. DEHP in atmosphere is adsorbed by leaf cuticular wax or stoma, then transfer to inner tissues through cell wall. Interestingly, we found that the leaf cuticular wax and cell wall of plants are possible barriers to uptake of DEHP for the plants possessing lower DEHP uptake ability. Our results will provide some information for further study on the mechanism of DEHP uptake by plants.


Sign in / Sign up

Export Citation Format

Share Document