scholarly journals Alternative Liquid Assisted-Sintering of AL/CU Composites Using Selective Powders of AS-Cast Al-ZN Alloy

Author(s):  
Eder Lopes Ortiz ◽  
Wislei Riuper Osório ◽  
Ausdinir Danilo Bortolozo ◽  
Giovana da Silva Padilha

Abstract Al and its alloys constitute one of the most versatile, economical and attractive materials for a wide range of applications. The 7xxx and 2xxx series alloys are those of achieving the highest mechanical strength among aluminum alloys. In this investigation, using powder metallurgy provides the microstructural and mechanical properties characterizations of non-commercial Al6Cu5Zn alloy by using powder metallurgy. Initial powder sizes are determined and the best condition is obtained for the distribution comprised between 75-106 μm. The samples are sintered at 585 oC, 600 oC and 615 oC during 0.5, 1.5 h and 3 h. It is found that mechanical behavior similar to as-cast Al-Cu based alloys is attained (~ 125 MPa) when the samples at 615 oC during 3 h are sintered. Considering the reduction of energy consumption and metal fumes commonly produced in foundry, Al-Zn powder can be used with Al and Cu elemental powders to constitute an Al6Cu5Zn alloy.

Author(s):  
Weibing Teng ◽  
Joseph Cappello ◽  
Xiaoyi Wu

Silk may possess superior mechanical strength while its resilience is very poor. In contrast, elastin in human arteries is very soft but extremely durable with an estimated half-life of 70 years. By combing polypeptide sequences derived from native silk and elastin, we have produced a series of silk-elastin-like proteins (SELPs), which have displayed a set of outstanding properties such as good biocompatibility and controllable biodegradation rates [1]. In this study, we will examine the crystallization of the silk-like blocks and the crosslinking of the elastin-like blocks, as well as their influences on the mechanical behavior of SELPs. The ultimate goal of this study is to explore the potential of SELPs for applications in the engineering of load-bearing tissues such as arteries.


2007 ◽  
Vol 546-549 ◽  
pp. 237-240 ◽  
Author(s):  
Bin Chen ◽  
Dong Liang Lin ◽  
Xiao Qin Zeng ◽  
Chen Lu

The elevated temperature mechanical behavior of Mg-Y-Zn alloys was investigated. It was found that the extruded Mg-Y-Zn alloy exhibited excellent mechanical properties both at ambient temperature and elevated temperature. With the increase of tensile temperature, the ultimate tensile strengths of Mg-Y-Zn alloys decreased and their elongations increased. The ultimate tensile strengths increased and elongations decreased with the increase of yttrium content. However, a gradual increase in the ultimate tensile strength and elongation both at ambient temperature and elevated temperature was obtained by increasing both yttrium and zinc contents. The fracture modes of Mg-Y-Zn alloys at different tensile temperature were also investigated.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1269-1275
Author(s):  
Anatoly A. Popovich ◽  
Vadim Sh. Sufiiarov ◽  
Igor A. Polozov ◽  
Evgenii V. Borisov ◽  
Maxim Y. Maximov

The article presents the results of selective laser melting of Ti-6Al-4V alloy. It was studied phase composition and microstructure of the initial powder material, the specimens manufactured by Selective Laser Melting and also the specimens after heat treatment. The effect of heat treatment on microstructure and mechanical properties of the specimens was shown. It was studied the mechanical behavior of the manufactured specimens before and after heat treatment at room and elevated temperatures as well. After heat treatment tests showed that the specimens have decent mechanical properties both at room and elevated temperatures.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Yosof M Khalifa ◽  
Salah M Mady

The vast increase of energy consumption, global warming and the harm they cause to the environment, emerge to be a major obstruction that distresses the world today. The current work views one of the methods that the world focused on as means of reducing the environmental harms and that is, through green building, or in more common words sustainable buildings. Those means, covers the exercising of a wide range of applications including merging of new and specific technologies in which through fulfilling its basis, the process of evaluation of the building takes place in terms of its harmony with the environment, reduction of energy consumption, and the reduction of the environmental problems caused by the building life cycle starting from defining of location, design of the building, operation, maintenance, repairing and up to the renewal of the building.  Despite the significance of green building, no profit nor implementations has yet been made in Libya. The latter is due to the lack of awareness by many Libyan social groups. From here, the idea behind this paper crystalized. It aims to spread and enhance the knowledge and techniques of green building. It also penetrates into the green building features and advantages that are considered to be a preliminary step to start its application in a wide range coinciding with the grand progress that the country has witnessed in the field of construction and housing. This paper concludes that it is possible to reduce energy consumption and the harm it causes to the environment after the implementation and merging of green building techniques and should be applied on a large scale covering the whole country. 


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2769
Author(s):  
Shanliang Dong ◽  
Bin Zhang ◽  
Yuli Zhan ◽  
Xin Liu ◽  
Ling Xin ◽  
...  

In the present research work, the effect of extrusion temperature from 480 to 560 °C on the microstructure and mechanical behavior of the SiCnw/2024Al composite (15 vol.%) has been explored. It has been found that extrusion at higher temperature (above 520 °C) was beneficial for the densification of the composite, while the residual average length and alignment of the SiC nanowires were also increased with the extrusion temperature. Moreover, higher extrusion temperature was helpful for the mechanical strength of the SiCnw/2024Al composite, and the peak-aged SiCnw/2024Al composite extruded at 560 °C revealed the highest strength (709.4 MPa) and elastic modulus (109.8 GPa).


2016 ◽  
Vol 869 ◽  
pp. 447-451 ◽  
Author(s):  
Oscar Olimpio Araújo Filho ◽  
Alexandre Douglas Araújo de Moura ◽  
Everthon Rodrigues de Araújo ◽  
Maurílio José dos Santos ◽  
Cezar Henrique Gonzalez ◽  
...  

Powder Metallurgy (PM) Techniques consists in a suitable technique to process composites materials. A specific PM technique of mechanical alloying developed to produce new materials in the solid state is a consolidated route to obtain aluminum alloys metal matrix composites. Aluminum alloys metal matrix composites allies the good properties of aluminum and its alloys but with poor mechanical properties and the reinforcement of ceramics phases which add better mechanical properties to these alloys. The research of this materials processing by PM techniques presented new materials with improved properties. In this work an AA1100 aluminum alloy was reinforced by particulate silicon carbide and alumina types of ceramic phases. The powders were mixed and then processed by mechanical alloying in a SPEX vibratory type mill. Then the powders obtained were compacted and vacuum sintered. The sintered composites were characterized by means of Scanning Electron Microscopy (SEM) plus Energy Dispersive Spectroscopy (EDS) and Vickers hardness (HV) tests to evaluate the mechanical behavior.


2011 ◽  
Vol 239-242 ◽  
pp. 1287-1291 ◽  
Author(s):  
Jun Zhao ◽  
Zhi Ming Yu ◽  
Kun Yu ◽  
Liang Jian Chen

The Mg-6%Zn-5%Hydroxyapatite (HA) biomaterial had been prepared through powder metallurgy method in this investigation. The mechanical properties and biodegradable behaviors of the Mg-Zn-HAcomposite in simulated body fluid were studied. The Mg-Zn-HA specimens obtained appropriate density, adjustable elastic modulus and compatible strength to natural bones. Immersion corrosion experiments revealed that 5wt% addition of HA in Mg-6%Zn alloy exhibited acceptable corrosion rates in simulated body fluid. The Mg matrix, Mg7Zn3phase and HA are identified in the experimental composite. The Mg(OH)2and Hydroxyapatite were found on the corrosion products in the simulated body fluid.


2014 ◽  
Vol 802 ◽  
pp. 108-113 ◽  
Author(s):  
Carlos Augusto Bezerra ◽  
Alexandre Douglas Araújo de Moura ◽  
Edval Gonçalves de Araújo ◽  
Maurílio José dos Santos ◽  
Oscar Olimpio de Araújo Filho

Powder Metallurgy (PM) Techniques consists in a suitable technique to process composites materials. A specific PM technique of mechanical alloying developed to produce new materials in the solid state is a well known route to obtain aluminum alloys metal matrix composites. Aluminum alloys metal matrix composites allies the good properties of aluminum and its alloys but with poor mechanical properties and the reinforcement of ceramics phases which add better mechanical properties to these alloys. The research of this materials processing by PM techniques presented new materials with improved properties. In this work an AA2124 aluminum alloy was reforced by particulated silicon nitride a kind of ceramic phase. The powders were mixed and then processed by mechanical alloying in a SPEX vibratory type mill. Then the powders obtained were compacted and vacuum sintered. The sintered composites were characterized by means of Scanning Electron Microscopy (SEM) plus Energy Dispersive Spectroscopy (EDS) and Vickers hardness tests to evaluate the mechanical behavior.


2021 ◽  
Vol 26 (4) ◽  
Author(s):  
Mayara Ribeiro Masseli ◽  
Bruna Horta Bastos Kuffner ◽  
Lucas Victor Benjamim Vasconcelos ◽  
Gilbert Silva ◽  
Daniela Sachs

ABSTRACT The hydroxyapatite calcium phosphate based ceramic (Hap) is widely used for bone repair, as it is a biocompatible biomaterial and because it has osteoconductive and osteoinductive properties. However, the low mechanical strength of Hap may limit its applicability. Thus, the present work aims to improve the mechanical properties of Hap, associating it with alumina (Al2O3), using the powder metallurgy technique, which consists in the milling of the precursor powders in a planetary ball mill, uniaxial pressing and sintering. The microstructure and mechanical strength of the sintered samples were evaluated using density, microhardness, compressive strength and wettability tests. It was concluded that the use of Al2O3 in the composite improves the mechanical properties of Hap, while decreases its hydrophilic potential. Thus, the composition with 40% Hap / 60% Al2O3 was considered the best for biomedical applications.


2018 ◽  
Vol 22 (Suppl. 1) ◽  
pp. 55-66 ◽  
Author(s):  
Furkan Sarsilmaz

Friction stir welding can be applied to weld dissimilar aluminum alloys which have different chemical and mechanical properties without causing any weld defects under a wide range of welding conditions. In this study, AA2024-T3 and AA6063-T6 aluminum alloys were selected and successfully welded in butt position together using by friction stir welding. The welding trials were conducted using different rotational speed and traverse speed conditions also investigating their effect on mechanical and micro-structural behavior of friction stir welding joints. The micro-structural evolution of the material was analyzed by optical observations and scanning electron microscopy inspections of the weld cross-sections. Tension and fatigue studies were also employed to the study. On the other hand, the fracture characterizations of samples were examined by scanning electron microscopy. Fatigue tests were performed by using a resonant electro-mechanical fatigue testing machine by axial bending fatigue test procedure. The fatigue strength has been analyzed drawing S-N curves. Experimental results indicate that micro-structural and mechanical properties are significantly affected by changing welding parameters within the chosen range of welding conditions.


Sign in / Sign up

Export Citation Format

Share Document