scholarly journals Tissue Doppler Derived Biphasic Velocities During the Pre and Post-Ejection Phases: Patterns, Concordance and Hemodynamic Significance in Health and Disease

Author(s):  
Alaa Mabrouk Salem Omar ◽  
Diana Maria Ronderos Botero ◽  
Javier Arreaza Caraballo ◽  
GaHee Kim ◽  
Yeraz Khachatoorian ◽  
...  

Abstract Background Pre-(PRE) and post-ejection (POE) velocities by mitral annular tissue Doppler (TD) are biphasic and may be related to myocardial deformations. We investigated the predominance and concordance of TD-PRE and POE velocities and their effect on myocardial functions in controls and in HF patients. Methods Retrospectively, 84 HF patients [57.6 years, 28(33%) females, NYHA: 2.3±0.6, EF: 55±15%, 52(62%) preserved EF, and 32(38%) reduced EF], 42 normal young controls, and 26 asymptomatic age matched controls were included. Echocardiography was done and from mitral annular tissue Doppler recordings, the biphasic PRE and POE velocity signals were identified and compared between groups. Results While controls had almost always predominantly positive PRE and negative POE, HF had more negative PRE and positive POE. Moreover, almost all controls exhibited normal concordance (positive PRE and negative POE). HF exhibited more abnormal concordance which was significantly associated with worse NYHA, and parameters of diastolic and systolic functions. Opposite PRE and POE velocities correlated significantly in all groups (PREp vs POEn: young:r=0.52, p<0.001, age controls:r=0.79, p<0.001, HFpEF: r=0.56, p<0.001, HFrEF: r=0.42, p=0.018; PREn vs POEp: young: r=0.25,p=0.1, age controls: r=0.42, p=0.04, HFpEF: r=0.43, p=0.004, HFrEF: r=0.61, p<0.001) and the ratios PRE-P/N and POE-N/P correlated significantly with E/e’ in HF only. Conclusions In physiological state, TD signals are predominantly positive during PRE and negative during POE. Opposite PRE and POE velocities corelate, representing the PRE-generation and POE-reversal of shortening-stretch relationships, the attenuation of which in HF may be related to elevated LV filling pressures. In HF, partially or completely reversed concordance of PRE and POE is associated with progressive worsening of clinical and hemodynamic profiles.

2020 ◽  
Vol 27 (29) ◽  
pp. 4840-4854 ◽  
Author(s):  
Chrysoula-Evangelia Karachaliou ◽  
Hubert Kalbacher ◽  
Wolfgang Voelter ◽  
Ourania E. Tsitsilonis ◽  
Evangelia Livaniou

Prothymosin alpha (ProT&#945;) is a highly acidic polypeptide, ubiquitously expressed in almost all mammalian cells and tissues and consisting of 109 amino acids in humans. ProT&#945; is known to act both, intracellularly, as an anti-apoptotic and proliferation mediator, and extracellularly, as a biologic response modifier mediating immune responses similar to molecules termed as “alarmins”. Antibodies and immunochemical techniques for ProT&#945; have played a leading role in the investigation of the biological role of ProT&#945;, several aspects of which still remain unknown and contributed to unraveling the diagnostic and therapeutic potential of the polypeptide. This review deals with the so far reported antibodies along with the related immunodetection methodology for ProT&#945; (immunoassays as well as immunohistochemical, immunocytological, immunoblotting, and immunoprecipitation techniques) and its application to biological samples of interest (tissue extracts and sections, cells, cell lysates and cell culture supernatants, body fluids), in health and disease states. In this context, literature information is critically discussed, and some concluding remarks are presented.


2013 ◽  
Vol 69 (11) ◽  
pp. 2287-2292 ◽  
Author(s):  
Andrew C. Kruse ◽  
Aashish Manglik ◽  
Brian K. Kobilka ◽  
William I. Weis

G protein-coupled receptors (GPCRs) are a large class of integral membrane proteins involved in regulating virtually every aspect of human physiology. Despite their profound importance in human health and disease, structural information regarding GPCRs has been extremely limited until recently. With the advent of a variety of new biochemical and crystallographic techniques, the structural biology of GPCRs has advanced rapidly, offering key molecular insights into GPCR activation and signal transduction. To date, almost all GPCR structures have been solved using molecular-replacement techniques. Here, the unique aspects of molecular replacement as applied to individual GPCRs and to signaling complexes of these important proteins are discussed.


Author(s):  
Matthew Carlucci ◽  
Algimantas Kriščiūnas ◽  
Haohan Li ◽  
Povilas Gibas ◽  
Karolis Koncevičius ◽  
...  

Abstract Motivation Biological rhythmicity is fundamental to almost all organisms on Earth and plays a key role in health and disease. Identification of oscillating signals could lead to novel biological insights, yet its investigation is impeded by the extensive computational and statistical knowledge required to perform such analysis. Results To address this issue, we present DiscoRhythm (Discovering Rhythmicity), a user-friendly application for characterizing rhythmicity in temporal biological data. DiscoRhythm is available as a web application or an R/Bioconductor package for estimating phase, amplitude, and statistical significance using four popular approaches to rhythm detection (Cosinor, JTK Cycle, ARSER, and Lomb-Scargle). We optimized these algorithms for speed, improving their execution times up to 30-fold to enable rapid analysis of -omic-scale datasets in real-time. Informative visualizations, interactive modules for quality control, dimensionality reduction, periodicity profiling, and incorporation of experimental replicates make DiscoRhythm a thorough toolkit for analyzing rhythmicity. Availability and Implementation The DiscoRhythm R package is available on Bioconductor (https://bioconductor.org/packages/DiscoRhythm), with source code available on GitHub (https://github.com/matthewcarlucci/DiscoRhythm) under a GPL-3 license. The web application is securely deployed over HTTPS (https://disco.camh.ca) and is freely available for use worldwide. Local instances of the DiscoRhythm web application can be created using the R package or by deploying the publicly available Docker container (https://hub.docker.com/r/mcarlucci/discorhythm). Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
pp. 28-32
Author(s):  
Álvaro Zamudio-Tiburcio ◽  
Héctor Bermúdez-Ruiz ◽  
Pedro Antonio Reyes-López ◽  
María Magdalena Aguirre-García ◽  
Nydia Ávila-Vanzzini ◽  
...  

Definitely the statement that the different axes substantially influence not only bidirectional communication, but health and disease, is evident. In the near future there will be both axes as organs and almost all will be related to the activity of the Intestinal Microbiota. Generating a personal diet is a good recipe. Prescribing pre, pro or symbiotics is appropriate. Producing modulation of the Intestinal Microbiota, together with the two premises indicated, is a promising future for the correction of many conditions. Keywords: Intestinal microbiome; Intestinal microbiota; Axis microbiota; Intestinal microbiota Transplantation (IMT)


2021 ◽  
Vol 101 (1) ◽  
pp. 37-92 ◽  
Author(s):  
T. Alexander Quinn ◽  
Peter Kohl

The heart is vital for biological function in almost all chordates, including humans. It beats continually throughout our life, supplying the body with oxygen and nutrients while removing waste products. If it stops, so does life. The heartbeat involves precise coordination of the activity of billions of individual cells, as well as their swift and well-coordinated adaption to changes in physiological demand. Much of the vital control of cardiac function occurs at the level of individual cardiac muscle cells, including acute beat-by-beat feedback from the local mechanical environment to electrical activity (as opposed to longer term changes in gene expression and functional or structural remodeling). This process is known as mechano-electric coupling (MEC). In the current review, we present evidence for, and implications of, MEC in health and disease in human; summarize our understanding of MEC effects gained from whole animal, organ, tissue, and cell studies; identify potential molecular mediators of MEC responses; and demonstrate the power of computational modeling in developing a more comprehensive understanding of ‟what makes the heart tick.ˮ


2021 ◽  
Vol 32 ◽  
pp. 04004
Author(s):  
Marina Slozhenkina ◽  
Ivan Gorlov ◽  
Alexei Miroshnik ◽  
Dmitriy Nikolaev

The article presents an analysis of the use of antibiotic therapy in pig breeding and offered an alternative to them in the form of prebiotic supplements. Studies were conducted on the effect of probiotic drugs on the body of large white pigs in the farm-breeding plant Named after Lenin of Surovikinsky District of Volgograd Region and lasted until 180 days of age. For the experiment, 2 groups of Large White piglets of 2 months of age were formed. Each experimental group consisted of 15 pigs. Animals of the control group received standart farm animal diet (SD), analogs of the first experimental group SD + mixture of dietary supplements “LactuVet-1” and “Chlorelact” at a dosage of 0.2 mg / kg of live weight each. Deep studies were conducted on the effect of probiotic supplements to live weight gain, natural resistance, immunoglobulin reactivity, and slaughter indicators of piglets. Superiority of pigs from the experimental group in almost all the studied indicators over the peers of the control group was established.


2021 ◽  
Vol 12 ◽  
Author(s):  
Morgane Couchet ◽  
Charlotte Breuillard ◽  
Christelle Corne ◽  
John Rendu ◽  
Béatrice Morio ◽  
...  

Ornithine transcarbamylase (OTC; EC 2.1.3.3) is a ubiquitous enzyme found in almost all organisms, including vertebrates, microorganisms, and plants. Anabolic, mostly trimeric OTCs catalyze the production of L-citrulline from L-ornithine which is a part of the urea cycle. In eukaryotes, such OTC localizes to the mitochondrial matrix, partially bound to the mitochondrial inner membrane and part of channeling multi-enzyme assemblies. In mammals, mainly two organs express OTC: the liver, where it is an integral part of the urea cycle, and the intestine, where it synthesizes citrulline for export and plays a major role in amino acid homeostasis, particularly of L-glutamine and L-arginine. Here, we give an overview on OTC genes and proteins, their tissue distribution, regulation, and physiological function, emphasizing the importance of OTC and urea cycle enzymes for metabolic regulation in human health and disease. Finally, we summarize the current knowledge of OTC deficiency, a rare X-linked human genetic disorder, and its emerging role in various chronic pathologies.


2021 ◽  
Author(s):  
Venkata Suhas Maringanti ◽  
Vanni Bucci ◽  
Georg K Gerber

Longitudinal microbiome datasets are being generated with increasing regularity, and there is broad recognition that these studies are critical for unlocking the mechanisms through which the microbiome impacts human health and disease. Yet, there is a dearth of computational tools for analyzing microbiome time-series data. To address this gap, we developed an open-source software package, MDITRE, which implements a new highly efficient method leveraging deep-learning technologies to derive human-interpretable rules that predict host status from longitudinal microbiome data. Using semi-synthetic and a large compendium of publicly available 16S rRNA amplicon and metagenomics sequencing datasets, we demonstrate that in almost all cases, MDITRE performs on par or better than popular uninterpretable machine learning methods, and orders-of-magnitude faster than the prior interpretable technique. MDITRE also provides a graphical user interface, which we show through use cases can readily derive biologically meaningful interpretations linking patterns of microbiome changes over time with host phenotypes.


2009 ◽  
Vol 297 (4) ◽  
pp. R913-R924 ◽  
Author(s):  
Ruth C. R. Meex ◽  
Patrick Schrauwen ◽  
Matthijs K. C. Hesselink

Storage of fatty acids as triacylglycerol (TAG) occurs in almost all mammalian tissues. Whereas adipose tissue is by far the largest storage site of fatty acids as TAG, subcellular TAG-containing structures—referred to as lipid droplets (LD)—are also present in other tissues. Until recently, LD were considered inert storage sites of energy dense fats. Nowadays, however, LD are increasingly considered dynamic functional organelles involved in many intracellular processes like lipid metabolism, vesicle trafficking, and cell signaling. Next to TAG, LD also contain other neutral lipids such as diacylglycerol. Furthermore, LD are coated by a monolayer of phospholipids decorated with a variety of proteins regulating the delicate balance between LD synthesis, growth, and degradation. Disturbances in LD-coating proteins may result in disequilibrium of TAG synthesis and degradation, giving rise to insulin-desensitizing lipid intermediates, especially in insulin-responsive tissues like skeletal muscle. For a proper and detailed understanding, more information on processes and players involved in LD synthesis and degradation is necessary. This, however, is hampered by the fact that research on LD dynamics in (human) muscle is still in its infancy. A rapidly expanding body of knowledge on LD dynamics originates from studies in other tissues and other species. Here, we aim to review the involvement of LD-coating proteins in LD formation and degradation (LD dynamics) and to extrapolate this knowledge to human skeletal muscle and to explore the role of LD dynamics in myocellular insulin sensitivity.


2006 ◽  
Vol 27 (7) ◽  
pp. 762-778 ◽  
Author(s):  
Maria E. Trujillo ◽  
Philipp E. Scherer

The endocrine functions of the adipose organ are widely studied at this stage. The adipose organ, and in particular adipocytes, communicate with almost all other organs. Although some adipose tissue pads assume the functions as distinct “miniorgans,” adipocytes can also be present in smaller numbers interspersed with other cell types. Although fat pads have the potential to have a significant systemic impact, adipocytes may also affect neighboring tissues through paracrine interactions. These local or systemic effects are mediated through lipid and protein factors. The protein factors are commonly referred to as adipokines. Their expression and posttranslational modifications can undergo dramatic changes under different metabolic conditions. Due to the fact that none of the mutations that affect adipose tissue trigger embryonic lethality, the study of adipose tissue physiology lends itself to genetic analysis in mice. In fact, life in the complete absence of adipose tissue is possible in a laboratory setting, making even the most extreme adipose tissue phenotypes genetically amenable to be analyzed by disruption of specific genes or overexpression of others. Here, we briefly discuss some basic aspects of adipocyte physiology and the systemic impact of adipocyte-derived factors on energy homeostasis.


Sign in / Sign up

Export Citation Format

Share Document