scholarly journals Long non-coding RNA SREBF2-AS1 promotes cell progression by increasing SREBF2 expression in Hepatocellular carcinoma

Author(s):  
Lili Qu ◽  
Xiaoxiao Cai ◽  
Lailing Gong ◽  
Peng Shen ◽  
Yefei Zhu ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Long non-coding RNAs (lncRNAs) are emerging as one of important regulators that may be involved in the progression of cancers in humans. Methods Comprehensive analysis of the lncRNA expression profile of HCC was performed by using TCGA and Gene Expression Omnibus (GEO) database to screen the target lncRNA(s). LncRNA of SREBF2-AS1 was selected and its expression level in a cohort of 15 pairs of HCC tissues was verified by quantitative real-time PCR (qRT-PCR). Loss-of-function and gain-of-function assays were carried out to investigate the role of SREBF2-AS1 in HCC progression in vitro. Tumor formation assay was performed to verity the role of SREBF2-AS1 in HCC progression in vivo. Results Database analysis showed that the expression of SREBF2-AS1 was upregulated in HCC, which was correlated with neoplasm grade and over survival time. The expression of SREBF2-AS1 was verified in a cohort of 15 pairs of HCC tissues. SREBF2-AS1 knockdown mitigated HCC cell growth and promoted apoptosis in vitro and in vivo. Whereas, SREBF2-AS1 overexpression promoted tumor cell growth. Furthermore, our investigation demonstrated that the oncogenic activity of SREBF2-AS1 is partially attributable to the regulation of sterol regulatory element-binding protein 2 (SREBF2) expression. Conclusions Our study highlights the regulatory role of SREBF2-AS1 in promoting HCC progression, suggesting that SREBF2-AS1 might be a potent therapeutic target by regulating the expression of SREBF2 for patients with HCC.

2020 ◽  
Vol 160 (11-12) ◽  
pp. 650-658
Author(s):  
Yichen Le ◽  
Yi He ◽  
Meirong Bai ◽  
Ying Wang ◽  
Jiaxue Wu ◽  
...  

Ajuba has been found to be mutated or aberrantly regulated in several human cancers and plays important roles in cancer progression via different signaling pathways. However, little is known about the role of Ajuba in hepatocellular carcinoma (HCC). Here, we found an upregulation of Ajuba expression in HCC tissues compared with normal liver tissues, while a poor prognosis was observed in HCC patients with high Ajuba expression. Knockout of Ajuba in HCC cells inhibited cell growth in vitro and in vivo, suppressed cell migration, and enhanced the cell apoptosis under stress. Moreover, re-expression of Ajuba in Ajuba-deficient cells could restore the phenotype of Ajuba-deficient cells. In conclusion, these results indicate that Ajuba is upregulated in HCC and promotes cell growth and migration of HCC cells, suggesting that Ajuba could possibly be a new target for HCC diagnosis and treatment.


Author(s):  
Marco Giordano ◽  
Alessandra Decio ◽  
Chiara Battistini ◽  
Micol Baronio ◽  
Fabrizio Bianchi ◽  
...  

Abstract Background Cancer stem cells (CSC) have been implicated in tumor progression. In ovarian carcinoma (OC), CSC drive tumor formation, dissemination and recurrence, as well as drug resistance, thus contributing to the high death-to-incidence ratio of this disease. However, the molecular basis of such a pathogenic role of ovarian CSC (OCSC) has been elucidated only to a limited extent. In this context, the functional contribution of the L1 cell adhesion molecule (L1CAM) to OC stemness remains elusive. Methods The expression of L1CAM was investigated in patient-derived OCSC. The genetic manipulation of L1CAM in OC cells provided gain and loss-of-function models that were then employed in cell biological assays as well as in vivo tumorigenesis experiments to assess the role of L1CAM in OC cell stemness and in OCSC-driven tumor initiation. We applied antibody-mediated neutralization to investigate L1CAM druggability. Biochemical approaches were then combined with functional in vitro assays to study the molecular mechanisms underlying the functional role of L1CAM in OCSC. Results We report that L1CAM is upregulated in patient-derived OCSC. Functional studies showed that L1CAM promotes several stemness-related properties in OC cells, including sphere formation, tumor initiation and chemoresistance. These activities were repressed by an L1CAM-neutralizing antibody, pointing to L1CAM as a druggable target. Mechanistically, L1CAM interacted with and activated fibroblast growth factor receptor-1 (FGFR1), which in turn induced the SRC-mediated activation of STAT3. The inhibition of STAT3 prevented L1CAM-dependent OC stemness and tumor initiation. Conclusions Our study implicate L1CAM in the tumorigenic function of OCSC and point to the L1CAM/FGFR1/SRC/STAT3 signaling pathway as a novel driver of OC stemness. We also provide evidence that targeting this pathway can contribute to OC eradication.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuko Kusakabe ◽  
Tetsuhiro Chiba ◽  
Motohiko Oshima ◽  
Shuhei Koide ◽  
Ola Rizq ◽  
...  

AbstractBoth EZH2 and its homolog EZH1 function as histone H3 Lysine 27 (H3K27) methyltransferases and repress the transcription of target genes. Dysregulation of H3K27 trimethylation (H3K27me3) plays an important role in the development and progression of cancers such as hepatocellular carcinoma (HCC). This study investigated the relationship between the expression of EZH1/2 and the level of H3K27me3 in HCC. Additionally, the role of EZH1/2 in cell growth, tumorigenicity, and resistance to sorafenib were also analyzed. Both the lentiviral knockdown and the pharmacological inhibition of EZH1/2 (UNC1999) diminished the level of H3K27me3 and suppressed cell growth in liver cancer cells, compared with EZH1 or EZH2 single knockdown. Although a significant association was observed between EZH2 expression and H3K27me3 levels in HCC samples, overexpression of EZH1 appeared to contribute to enhanced H3K27me3 levels in some EZH2lowH3K27me3high cases. Akt suppression following sorafenib treatment resulted in an increase of the H3K27me3 levels through a decrease in EZH2 phosphorylation at serine 21. The combined use of sorafenib and UNC1999 exhibited synergistic antitumor effects in vitro and in vivo. Combination treatment canceled the sorafenib-induced enhancement in H3K27me3 levels, indicating that activation of EZH2 function is one of the mechanisms of sorafenib-resistance in HCC. In conclusion, sorafenib plus EZH1/2 inhibitors may comprise a novel therapeutic approach in HCC.


2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Yuchen Hou ◽  
Ziming Wang ◽  
Shanzhou Huang ◽  
Chengjun Sun ◽  
Jingya Zhao ◽  
...  

AbstractSpindle and kinetochore-related complex subunit 3 (SKA3) is a component of the spindle and kinetochore-related complexes and is essential for accurate timing of late mitosis. However, the relationship between SKA3 and hepatocellular carcinoma (HCC) has not yet been fully elucidated. Gene expression omnibus (GEO) (GSE62232, GSE45436, GSE6764, and GSE36376) and The Cancer Atlas (TCGA) datasets were analyzed to identify differential expression genes. Cell proliferation ability was analyzed using Cell Counting Kit-8 (CCK8) assay and plate clone formation assay, while scratch wound healing assay and transwell assay were used to analyze cell invasion. The role of SKA3 in vivo was explored using subcutaneous xenotransplantation model and lung metastasis model. Bioinformatics analysis found that hepatocellular carcinoma patients with high levels of expression of SKA3 have a poor prognosis. Similarly, immunohistochemical staining of 236 samples of tumors also found higher SKA3 expression in them, than in adjacent normal liver tissues. Significant levels of inhibition of in vivo and in vitro tumor proliferation and invasion result from the downregulation of SKA3. Mechanistically, SKA3 was found to affect tumor progression through the cell cycle and P53 signaling pathway as shown by the gene enrichment analysis (GSEA). G2/M phase arrest and severe apoptosis was also found to result from SKA3 knockdown, as shown by the inhibition of CDK2/p53 phosphorylation together with downregulation of BAX/Bcl-2 expression in HCC cells. Overall, these findings uncover the role of SKA3 in regulating the apoptosis and proliferation of hepatocellular carcinoma cells. This study was able to uncover new information on the tumorigenesis mechanism in hepatocellular carcinoma.


2020 ◽  
Author(s):  
Lungwani Muungo

Upregulation of EBAG9 expression has been observed in severalmalignant tumors such as advanced breast and prostate cancers,indicating that EBAG9 may contribute to tumor proliferation. Inthe present study, we assess the role of EBAG9 in bladder cancer.We generated human bladder cancer EJ cells stably expressingFLAG-tagged EBAG9 (EJ-EBAG9) or empty vector (EJ-vector),and investigated whether EBAG9 overexpression modulates cellgrowth and migration in vitro as well as the in vivo tumor formationof EJ transfectants in xenograft models of BALB/c nude mice.EBAG9 overexpression promoted EJ cell migration, while theeffect of EBAG9 to cultured cell growth was rather minimal.Tumorigenic experiments in nude mice showed that the size of EJEBAG9-derived tumors was significantly larger than EJ-vectorderivedtumors. Loss-of-function study for EBAG9 using smallinterfering RNA (siRNA) in xenografts with parental EJ cellsshowed that the intra-tumoral injection of EBAG9 siRNA markedlyreduced the EJ tumor formation compared with controlsiRNA. Furthermore, immunohistochemical study for EBAG9expression was performed in 60 pathological bladder cancer specimens.Intense and diffuse cytoplasmic immunostaining wasobserved in 45% of the bladder cancer cases. Positive EBAG9immunoreactivity was closely correlated with poor prognosis ofthe patients (p 5 0.0001) and it was an independent prognosticpredictor for disease-specific survival in multivariate analysis(p 5 0.003). Our results indicate that EBAG9 would be a crucialregulator of tumor progression and a potential prognostic markerfor bladder cancer.


2021 ◽  
Author(s):  
Peiyi Xie ◽  
Yanglin Chen ◽  
Hongfei Zhang ◽  
Guichao Zhou ◽  
Qing Chao ◽  
...  

Abstract Background: OTUD3, a deubiquitinating enzyme, has emerged as important role in some cancer. It showed that OTUD3 plays suppressive role in breast cancer whereas oncogenic role in lung cancer. However, the function and mechanism of OTUD3 in hepatocellular carcinoma (HCC) progression remain elusive. Methods: Gene and protein expression of OTUD3 in HCC tissues were determined by qRT-PCR, western blot and immunohistochemistry. A series of gain- and loss-of-function assays were used to investigated the role of OTUD3 in HCC cells progression. Moreover, mass spectroscopic analysis and RNA-seq were used to identify the downstream targets of OTUD3 in HCC cells. The interaction between OTUD3 and ACTN4 was examined through co-IP experiment and in vitro ubiquitination assay.Results: In our research, OTUD3 was significantly overexpressed in HCC tissues and higher OTUD3 expression was correlated with bigger tumor size, more distant metastasis, and worse TNM stage. Additionally, OTUD3 promoted HCC cells growth and metastasis in vitro and in vivo. Furthermore, ACTN4 was identified as a downstream target of OTUD3 and ACTN4 protein level was significantly related to OTUD3 expression. Rescue experiments indicated that ACTN4 was essential for OTUD3-mediated HCC proliferation and metastasis in vitro and in vivo. Moreover, we identified that NF-κB signaling pathway was activated by OTUD3 through ACTN4 to promote HCC cells progression. Importantly, OTUD3 protein level was correlated with ACTN4 protein level and activity of NF-κB signaling pathway in HCC tissues. Conclusion: Our findings identify the oncogenic role of OTUD3 in HCC and suggest that OTUD3 can be considered as a pivotal prognostic biomarker and a potential therapeutic target.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ying Xie ◽  
Xiaofeng Hang ◽  
Wensheng Xu ◽  
Jing Gu ◽  
Yuanjing Zhang ◽  
...  

Abstract Background Most of the biological functions of circular RNAs (circRNAs) and the potential underlying mechanisms in hepatocellular carcinoma (HCC) have not yet been discovered. Methods In this study, using circRNA expression data from HCC tumor tissues and adjacent tissues from the Gene Expression Omnibus database, we identified out differentially expressed circRNAs and verified them by qRT-PCT. Functional experiments were performed to evaluate the effects of circFAM13B in HCC in vitro and in vivo. Results We found that circFAM13B was the most significantly differentially expressed circRNA in HCC tissue. Subsequently, in vitro and in vivo studies also demonstrated that circFAM13B promoted the proliferation of HCC. Further studies revealed that circFAM13B, a sponge of miR-212, is involved in the regulation of E2F5 gene expression by competitively binding to miR-212, inhibits the activation of the P53 signalling pathway, and promotes the proliferation of HCC cells. Conclusions Our findings revealed the mechanism underlying the regulatory role played by circFAM13B, miR-212 and E2F5 in HCC. This study provides a new theoretical basis and novel target for the clinical prevention and treatment of HCC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yarong Guo ◽  
Bao Chai ◽  
Junmei Jia ◽  
Mudan Yang ◽  
Yanjun Li ◽  
...  

Abstract Objective Dysregulation of KLF7 participates in the development of various cancers, but it is unclear whether there is a link between HCC and aberrant expression of KLF7. The aim of this study was to investigate the role of KLF7 in proliferation and migration of hepatocellular carcinoma (HCC) cells. Methods CCK8, colony growth, transwell, cell cycle analysis and apoptosis detection were performed to explore the effect of KLF7, VPS35 and Ccdc85c on cell function in vitro. Xenografted tumor growth was used to assess in vivo role of KLF7. Chip-qPCR and luciferase reporter assays were applied to check whether KLF7 regulated VPS35 at transcriptional manner. Co-IP assay was performed to detect the interaction between VPS35 and Ccdc85c. Immunohistochemical staining and qRT-PCR analysis were performed in human HCC sampels to study the clinical significance of KLF7, VPS35 and β-catenin. Results Firstly, KLF7 was highly expressed in human HCC samples and correlated with patients’ differentiation and metastasis status. KLF7 overexpression contributed to cell proliferation and invasion of HCC cells in vitro and in vivo. KLF7 transcriptional activation of VPS35 was necessary for HCC tumor growth and metastasis. Further, co-IP studies revealed that VPS35 could interact with Ccdc85c in HCC cells. Rescue assay confirmed that overexpression of VPS35 and knockdown of Ccdc85c abolished the VPS35-medicated promotion effect on cell proliferation and invasion. Finally, KLF7/VPS35 axis regulated Ccdc85c, which involved in activation of β-catenin signaling pathway, confirmed using β-catenin inhibitor, GK974. Functional studies suggested that downregulation of Ccdc85c partly reversed the capacity of cell proliferation and invasion in HCC cells, which was regulated by VPS35 upregulation. Lastly, there was a positive correlation among KLF7, VPS35 and active-β-catenin in human HCC patients. Conclusion We demonstrated that KLF7/VPS35 axis promoted HCC cell progression by activating Ccdc85c-medicated β-catenin pathway. Targeting this signal axis might be a potential treatment strategy for HCC.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dan Lei ◽  
Wen-Ting Yang ◽  
Peng-Sheng Zheng

AbstractHomeobox B4 (HOXB4), which belongs to the homeobox (HOX) family, possesses transcription factor activity and has a crucial role in stem cell self-renewal and tumorigenesis. However, its biological function and exact mechanism in cervical cancer remain unknown. Here, we found that HOXB4 was markedly downregulated in cervical cancer. We demonstrated that HOXB4 obviously suppressed cervical cancer cell proliferation and tumorigenic potential in nude mice. Additionally, HOXB4-induced cell cycle arrest at the transition from the G0/G1 phase to the S phase. Conversely, loss of HOXB4 promoted cervical cancer cell growth both in vitro and in vivo. Bioinformatics analyses and mechanistic studies revealed that HOXB4 inhibited the activity of the Wnt/β-catenin signaling pathway by direct transcriptional repression of β-catenin. Furthermore, β-catenin re-expression rescued HOXB4-induced cervical cancer cell defects. Taken together, these findings suggested that HOXB4 directly transcriptional repressed β-catenin and subsequently inactivated the Wnt/β-catenin signaling pathway, leading to significant inhibition of cervical cancer cell growth and tumor formation.


Sign in / Sign up

Export Citation Format

Share Document