scholarly journals Strength Analysis of Porous YSZ Ceramics With the Same Porosity and Different Pore Structure

Author(s):  
ying lang ◽  
xin dai ◽  
lin zhao ◽  
Hong-Kang wei ◽  
chang-an wang

Abstract Porous YSZ ceramics with different pore structure were prepared by volume limiting foaming technology. Accurate porosity could achieve by this technology[1], so all samples were adjusted to density of 1g/m3 (porosity of about 82.6%). For the same density, the influence of porosity change on the strength was excluded. The effects of different pore structure on mechanical properties (compressive strength, strength-deformation curve and Young's modulus) were studied. The results showed that for porous ceramics with uniform pores the larger the pore size was, the smaller the Young's modulus and the lower the strength was. In addition, for samples with mix pores (large pore and small pore), when the volume fraction of macropores is large, the strength is the same as that of porous ceramics with uniform small pore size structure; when the volume fraction of small pores is large, the strength is the same as that of porous ceramics with uniform large pore size structure.

2018 ◽  
Vol 770 ◽  
pp. 126-131 ◽  
Author(s):  
Zeng Feng Li ◽  
Chen Wu ◽  
Gang Chen ◽  
Ping Tan ◽  
Shao Yang Zhao ◽  
...  

In order to meet the requirements for the purpose of biological implant materials, analyzes the matching requirements of the compatibility and mechanical properties of titanium foam biological; by powder metallurgy method, using TiH2 powder as raw material, using ammonium bicarbonate as pore forming agent, preparation of titanium foam. The influences of pore forming agent content and particle size, sintering temperature and holding time on the pore structure, pore distribution, pore size and compressive properties of foam titanium were discussed in detail. The results show that with the increase of the sintering temperature and prolonging holding time, titanium foam compressive yield strength and modulus increased; with the increase of the content of pore forming agent, titanium foam compression yield strength and Young's modulus decreased. The preparation of a porosity of 48% ~ 77%, pore size between 300 ~ 500 m, foam pore structure and pore size in micron level through three-dimensional pore, pore size of bio materials meet the requirements. The compressive strength is 98~186MPa, and the young's modulus is 1.6 ~ 6.8 GPa, which matches the strength and the modulus of elasticity of biological implants.


2016 ◽  
Vol 848 ◽  
pp. 272-278 ◽  
Author(s):  
Sha Qiu ◽  
Yu Fei Tang ◽  
Kang Zhao

Porous Al2O3 ceramics were fabricated by directional freezing and low pressure drying with sucrose solution as the cryogenic medium. The pore structure of the porous ceramics was changed by annealing in the environment of higher than the glass transition temperature of sucrose solution after directional freezing because of changing the size and distribution of crystalline solid. The effects of the annealing time on the pore structure, open porosity and mechanical property of porous ceramics were investigated. The results showed that the pore size of porous ceramics increased substantially with the increase of annealing time. The open porosity of porous ceramics changed slightly with the increase of annealing time, while the compressive strength of porous ceramics showed a trend of decrease. The pore size range of porous Al2O3 ceramics fabricated is from 6.0μm to 110.2μm, the range of porosity was 40.35%-64.58%, the compressive strength range of porous Al2O3 ceramics was from 25.9MPa-126.6MPa. The porous Al2O3 ceramics with different pore structure can be obtained by changing the annealing time.


2021 ◽  
Vol 21 (2) ◽  
pp. 7-11
Author(s):  
Ahmed Mansoor Abbood ◽  
Haider K. Mehbes ◽  
Abdulkareem. F. Hasan

In this study, glass-filled epoxy functionally graded material (FGM) was prepared by adopting the hand lay-up method. The vertical gravity casting was used to produce a continuous variation in elastic properties. A 30 % volume fraction of glass ingredients that have mean diameter 90 μm was spread in epoxy resin (ρ = 1050 kg/m3). The mechanical properties of FGM were evaluated according to ASTM D638. Experimental results showed that a gradually relationship between Young’s modulus and volume fraction of glass particles, where the value of Young’s modulus at high concentration of glass particles was greater than that at low concentration, while the value of Poisson’s ratio at high concentration of glass particles was lower than that at low concentration. The manufacture of this FG beam is particularly important and useful in order to benefit from it in the field of various fracture tests under dynamic or cyclic loads.


2011 ◽  
Vol 146 ◽  
pp. 12-26 ◽  
Author(s):  
A. Gherissi ◽  
R.Ben Cheikh ◽  
E. Dévaux ◽  
Fethi Abbassi

In this study, we present the manufacturing process of two new composites materials in the form of long fibers of polylactic-acid (PLA) or polypropylene (PP), reinforced by cellulose whiskers micro-fibers loads. In order to evaluate the mechanical properties of these advanced materials, a several uniaxial tensile tests were carried out. The PP and the PLA have initially been spinning without the addition of cellulose whiskers micro-fibers. In order to study the effects of cellulose whiskers micro-fibers reinforcements in the Mechanical behavior of the PLA and PP filaments, we determinate the proprieties of these advanced material from the tensile results. For the PP composite filaments material case, the whiskers reinforcement increases Young's modulus and failure resistance, but it reduces the limit strength failure. For the PLA composites the addition of 1% wt of cellulose whiskers from the total volume fraction of the material, increase the Young’s modulus more than 50% and a decrease of the failure resistance and the limit strength of composite. The obtained composites fibers are very rigid and brittle. What follows, that the addition of cellulose whiskers micro fibers in PP matrix, provides mechanical properties more convenient compared to the PLA matrix.


2018 ◽  
Vol 5 (1) ◽  
pp. 015204 ◽  
Author(s):  
Xuyao Zhang ◽  
Weiguo Li ◽  
Haibo Kou ◽  
Jiaxing Shao ◽  
Yong Deng ◽  
...  

2019 ◽  
Vol 25 (10) ◽  
pp. 1661-1683 ◽  
Author(s):  
Rafael Quelho de Macedo ◽  
Rafael Thiago Luiz Ferreira ◽  
Kuzhichalil Jayachandran

Purpose This paper aims to present experimental and numerical analyses of fused filament fabrication (FFF) printed parts and show how mechanical characteristics of printed ABS-MG94 (acrylonitrile butadiene styrene) are influenced by the void volume fraction, cooling rate and residual thermal stresses. Design/methodology/approach Printed specimens were experimentally tested to evaluate the mechanical properties for different printing speeds, and micrographs were taken. A thermo-mechanical finite element model, able to simulate the FFF process, was developed to calculate the temperature fields in time, cooling rate and residual thermal stresses. Finally, the experimental mechanical properties and the microstructure distribution could be explained by the temperature fields in time, cooling rate and residual thermal stresses. Findings Micrographs revealed the increase of void volume fraction with the printing speed. The variations on voids were associated to the temperature fields in time: when the temperatures remained high for longer periods, less voids were generated. The Young's Modulus of the deposited filament varied according to the cooling rate: it decreased when the cooling rate increased. The influence of the residual thermal stresses and void volume fraction on the printed parts failure was also investigated: in the worst scenarios evaluated, the void volume fraction reduced the strength in 9 per cent, while the residual thermal stresses reduced it in 3.8 per cent. Originality/value This work explains how the temperature fields can affect the void volume fraction, Young's Modulus and failure of printed parts. Experimental and numerical results are shown. The presented research can be used to choose printing parameters to achieve desired mechanical properties of FFF printed parts.


2001 ◽  
Vol 702 ◽  
Author(s):  
Shigeyasu Amada

ABSTRACTBamboo is a typical composite material which is axially reinforced by very strong fibers. So that, the fibers play an important role for the bamboo structure. The elastic properties of the bamboo culm have been measured only by tensile test so far, which needs a large specimen. Recently ultra-sonic technique, which has a simple procedure and uses a small specimen, has been applied to woods as well as metals. This report reviews about the elastic properties of bamboo and Hemp palm fibers. The Young's modulus and Poisson's ratio of the bamboo fibers are measured by ultra-sonic method with a transmitting wave. On the other hand, the strength of the bamboo and Hemp palm fibers are measured by the tensile tests. Using the volume fraction of fibers in the specimen and mixture principle, the Young's modulus and strength of the fibers and parenchyma were obtained. The fiber has a high strength up to 1GPa and an strong anisotropic property because its axial Young's modulus has 7 times higher than the one in the transverse direction.


Author(s):  
Siva P. Gurrum ◽  
Jie-Hua Zhao ◽  
Darvin R. Edwards

This work presents a methodology implementing random packing of spheres combined with commercial finite element method (FEM) software to optimize the material properties, such as Young’s modulus, Poisson’s ratio, coefficient of thermal expansion (CTE) of two-phase materials used in electronic packaging. The methodology includes an implementation of a numerical algorithm of random packing of spheres and a technique for creating conformal FEM mesh of a large aggregate of particles embedded in a medium. We explored the random packing of spheres with different diameters using particle generation algorithms coded in MATLAB. The FEM meshes were generated using MATLAB and TETGEN. After importing the nodes and elements databases into commercial FEM software ANSYS, the composite materials with spherical fillers and the polymer matrix were modeled using ANSYS. The effective Young’s modulus, Poisson’s ratio, and CTE along different axes were calculated using ANSYS by applying proper loading and boundary conditions. It was found that the composite material was virtually isotropic. The Young’s modulus and Poisson’s ratio calculated by FEM models were compared to a number of analytical solutions in the literature. For low volume fraction of filler content, the FEM results and analytical solutions agree well. However, for high volume fraction of filler content, there is some discrepancy between FEM and analytical models and also among the analytical models themselves.


2011 ◽  
Vol 236-238 ◽  
pp. 1178-1182
Author(s):  
Yan Xin Liu ◽  
Yu Long Wang ◽  
Shen Tao Qin ◽  
Fei Fei Liu

Coating pore structure of low gloss coated paper based on different pigment blends was analyzed using mercury intrusion method in this paper. The results show that pore size of coating layer structure of low gloss coated paper ranges from 20nm-500nm, and the range from 500nm-5000nm is mainly from base paper and interactions between coating color and base paper. Printability of coated paper can be well related with coating pore structure. Print gloss is strongly influenced by pore size and pore volume. Large pore diameters and small pore volume of coating layer structure can improve print gloss. Ink density increases with the increasing of pore diameter while the pore volume is kept constant. The increasing of pore volume of coat layer structure will improve capillary absorption and then improve ink absorption. The control of coating pore structure is very important for producing low gloss coated paper.


1994 ◽  
Vol 116 (4) ◽  
pp. 989-996
Author(s):  
Chung-Yun Gau ◽  
Souran Manoochehri

A method for the design of nonhomogeneous, variable-thickness, annular disks under internal and external pressures satisfying Tresca yield criterion is presented in this paper. The effects of varying the disk thickness and stiffness properties to achieve a fully stressed design are investigated. Analytical solutions for distributions of Young’s modulus and disk thickness variations have been developed for the case of fully stressed designs. Examples are given for three different cases, namely, constant thickness with variable Young’s modulus, variable thickness with constant Young’s modulus, and variable thickness with variable Young’s modulus. In the last case, due to the existence of many alternative solutions, optimal design techniques have been utilized. Application of the developed methodology for optimal designs of short fiber composites with random fiber orientations is discussed. The optimization results of fiber volume fraction distributions and thickness variations for a disk made of nylon 66 matrix with E glass fiber are given under specified pressure loadings.


Sign in / Sign up

Export Citation Format

Share Document