scholarly journals Molecular Serotyping and Resistance of Clinical Strains of Haemophilus (Glaesserella) Parasuis in Chinese Pig Farms From 2016 to 2018.

Author(s):  
Jinjin Liu ◽  
Long Guo ◽  
Yi Yuan ◽  
Wenbo Song ◽  
Qianqian Li ◽  
...  

Abstract Haemophilus parasuis (H. parasuis) is the etiological agent of Glässer's disease and brings great economic losses to the pig industry. The goal of our research is to reveal the serotypes of H. parasuis isolated from large-scale pig farms in China from 2016 to 2018. From 2016 to 2018, 8153 H. parasuis field strains were isolated from 14610 clinical samples of sick pigs with clinical symptoms from 26 provinces and cities of China. Among them, 1386 strains were identified as H. parasuis by PCR, and the isolation rate was 9.49%. Through multiplex PCR, we showed that type 5/12 and type 4 strains had the highest separation rate, followed by type 13 and type 14 strains. Using disk diffusion method, we found cephalosporin antibiotics and peptide antibiotics all had good inhibitory effect on H. parasuis. Our conclusion may play a positive role in the prevention and treatment of H. parasuis.

2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Munmun B. Marak ◽  
Biranthabail Dhanashree

Objective. The study aims to speciate clinical Candida isolates and detect their biofilm-forming ability and antifungal resistance. Methods. All the Candida spp. isolated from different clinical samples like pus, urine, blood, and body fluid were included in the study. Biofilm production was tested by the microtiter plate method. Antifungal susceptibility was studied by the disk diffusion method. Patient’s demographic details such as age, sex, and clinical information were collected. Presence of other risk factors such as diabetes mellitus, history of antibiotic use, and any urinary tract instrumentations was also recorded. Results. Among 90 Candida species isolated, most predominant species was found to be C. albicans (45.5%) followed by C. tropicalis (28.88%), C. krusei (20%), C. glabrata (3.33%), and C. parapsilosis (2.22%). Candida spp. were isolated from urine (43%), BAL/sputum (18.88%), high vaginal swab (8.88%), suction tips (7.77%), blood and wound swabs (6.66%), pus (3.33%), bile aspirate (2.22%), and deep tissue (1.11%). A larger number of females were affected than males, and the age group of 51 to 60 years was more susceptible to candidiasis. A higher number of C. albicans isolates produced biofilm followed by C. parapsilosis, C. tropicalis, and C. krusei. However, C. glabrata showed no biofilm production in our study. All Candida isolates were 100% sensitive to amphotericin B. Voriconazole was the next effective drug with 81.11% susceptibility. 24.44% of strains were resistant to fluconazole. Conclusion. Speciation of Candida isolates, detection of ability to form the biofilm, and monitoring of antifungal susceptibility testing are necessary for appropriate treatment.


2020 ◽  
Author(s):  
zhenhua Guo ◽  
Kunpeng Li ◽  
Songlin Qiao ◽  
Xinxin Chen ◽  
Ruiguang Deng ◽  
...  

Abstract Background: African swine fever (ASF) is the most important disease to the pigs and cause serious economic losses to the countries with large-scale swine production. Vaccines are recognized as the most useful tool to prevent and control ASF virus (ASFV) infection. Currently, the MGF505 and MGF360 gene-deleted ASFVs or combined with CD2v deletion were confirmed to be the most promising vaccine candidates. Thus, it is essential to develop a diagnosis method to discriminate wide-type strain from the vaccines used.Results: In this study, we established a duplex TaqMan real-time PCR based on the B646L gene and MGF505-2R gene. The sequence alignment showed that the targeted regions of primers and probes are highly conserved in the genotype II ASFVs. The duplex real-time assay can specifically detect B646L and MGF505-2R gene single or simultaneously without cross-reaction with other porcine viruses tested. The limit of detection was 5.8 copies and 3.0 copies for the standard plasmids containing B646L and MGF505-2R genes, respectively. Clinical samples were tested in parallel by duplex real-time PCR and a commercial ASFV detection kit. The detection results of these two assays against B646L gene were well consistent.Conclusion: We successfully developed and evaluated a duplex TaqMan real-time PCR method which can effectively distinguish the wide type and MGF505 gene-deleted ASFVs. It would be a useful tool for the clinical diagnosis and control of ASF.


Author(s):  
Maysa Serpa ◽  
Juliana Amália Fonte Bôa do Nascimento ◽  
Mirian Fátima Alves ◽  
Maria Isabel Maldonado Coelho Guedes ◽  
Adrienny Trindade Reis ◽  
...  

Antimicrobial resistance is a current and important issue to public health, and it is usually associated with the indiscriminate use of antimicrobials in animal production. This study aimed to evaluate the antimicrobial susceptibility profile in bacterial isolates from pigs with clinical respiratory signs in Brazil. One hundred sixty bacterial strains isolated from pigs from 51 pig farms in Brazil were studied. In vitro disk-diffusion method was employed using 14 antimicrobial agents: amoxicillin, penicillin, ceftiofur, ciprofloxacin, enrofloxacin, chlortetracycline, doxycycline, oxytetracycline, tetracycline, erythromycin, tilmicosin, florfenicol, lincomycin, and sulfadiazine/trimethoprim. The majority of isolates were resistant to at least one antimicrobial agent (98.75%; 158/160), while 31.25% (50/160) of the strains were multidrug resistant. Streptococcus suis and Bordetella bronchiseptica were the pathogens that showed higher resistance levels. Haemophilus parasuis showed high resistance levels to sulfadiazine/trimethoprim (9/18=50%). We observed that isolates from the midwestern and southern regions exhibited four times greater chance of being multidrug resistant than the isolates from the southeastern region studied. Overall, the results of the present study showed a great level of resistance to lincomycin, erythromycin, sulfadiazine/trimethoprim, and tetracycline among bacterial respiratory pathogens isolated from pigs in Brazil. The high levels of antimicrobial resistance in swine respiratory bacterial pathogens highlight the need for the proper use of antimicrobials in Brazilian pig farms.


2010 ◽  
Vol 5 (07) ◽  
pp. 502-510 ◽  
Author(s):  
Priscila Dauros ◽  
Helia Bello ◽  
Mariana Domínguez ◽  
Juan C. Hormazábal ◽  
Gerardo González

Introduction: Vibrio (V.) parahaemolyticus has endemically established in Chilean sea shores, causing outbreaks every year, with an important number of cases. In order to know the genetic relationship, genotype dominance and antibiotic resistance of isolates obtained from two outbreaks, this study characterized 110 strains isolated from environmental and clinical samples in years 2005 and 2007 in Chile. Methodology: Genotyping was performed by determination of PFGE profiles, and pandemic group and integrons were screened by PCR. Antimicrobial susceptibility was studied by the disk diffusion method. Results: High antibiotic susceptibility frequency was found, mainly among 2007 isolates, except to ampicillin, cephalothin, cefoxitin, cefpodoxime, amikacin, streptomycin and kanamycin. Strains belonging to the pandemic group in clinical isolates account for 88% in 2005, decreasing to 66% in 2007 and among environmental isolates were detected in 20% of the strains from 2005, rising to 36% in 2007. In 2005, nine different PFGE profiles were identified, with 78% of the strains corresponding to a single clone. In 2007, sixteen different PFGE profiles were detected, with 61% of the strains included into a sole clone. The same clone was prevalent in both years. None of class 1, 2, 3 and SXT integrases genes was detected; however, the superintegron integrase gene (intIA) was present in almost all strains. Conclusions: These results suggest the persistence and dominance of a unique PFGE clone of V. parahaemolyticus during 2005 and 2007, and the absence of genetic elements that capture antibiotic resistance genes described in other species of Vibrio.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Kiana Karimi ◽  
Omid Zarei ◽  
Parinaz Sedighi ◽  
Mohammad Taheri ◽  
Amin Doosti-Irani ◽  
...  

Aim. Klebsiella pneumoniae (K. pneumoniae) is an encapsulated Gram-negative bacterium that can lead to 14–20% of nosocomial infections. The ability of biofilm formation in this bacterium decreases the host immune response and antibiotic efficacy. This may impose a huge impact on patients and healthcare settings. This study aimed to evaluate the antibiotic resistance pattern and biofilm formation in K. pneumoniae strains isolated from two major Hamadan hospitals, west of Iran. Methods. A total of 83 K. pneumoniae strains were isolated from clinical samples of patients in different wards of Hamadan hospitals from September 2018 to March 2019. Determination of antimicrobial susceptibility was performed using the disk diffusion method. Biofilm formation was evaluated by the crystal violet method. Data were analyzed by the SPSS software and chi-square test. Results. The results showed that clinical samples included 18 urinary tract samples (22%), 6 wound samples (7%), 6 blood samples (7%), 17 tracheal tube aspiration samples (20%), 32 throat cultures (38%), 2 sputum samples (2.5%), and 2 abscess drain cultures (2.5%). High-level resistance to cefotaxime was detected in 92%, and all of isolates were susceptible to colistin. Biofilm formation was seen in 62 (75%) isolates. Strong biofilm formation was observed in 17 (20%) strains. A significant correlation was seen between biofilm formation and antibiotic resistance ( P value <0.05). Conclusion. Our findings emphasize the need for proper diagnosis, control, and treatment of infections caused by K. pneumoniae especially in respiratory tract infections due to the strong biofilm formation and high antibiotic resistance in these strains.


2019 ◽  
Vol 13 (2) ◽  
pp. 7-10
Author(s):  
Fatima Afroz ◽  
Shaheda Anwar ◽  
Mashrura Quraishi ◽  
GM Mohiuddin ◽  
SM Ali Ahmed ◽  
...  

Carbapenems, often agents of last resort for multidrug resistant bacterial infections are now threatened by widespread dissemination of carbapenem-resistant Enterobacteriaceae (CRE). Production of carbapenemases remain the most clinically important mechanism of carbapenem resistance in Enterobacteriaceae. The objective of this study was to determine the antibiogram pattern of carbapenemase producing Enterobacteriaceae. A cross sectional study was conducted at department of Microbiology and Immunology, BSMMU from September 2018 to August 2019. A total of 145 CRE isolates from different clinical samples were studied.Antimicrobial susceptibility was examinedby disk diffusion method and MIC of colistin by broth microdilution method. Resistant carbapenemase genes NDM and OXA-48 were identified by polymerase chain reaction. Out of 145 CRE isolates, 104 were NDM, 73 were OXA-48and 34 isolates were both NDM and OXA-48 co-producers. All the NDM and OXA-48 carbapenemase producing isolates were 100% resistant to meropenem, imipenem, ertapenem, ceftriaxone, ceftazidime, cefotaxime, cefuroxime, amoxicillin + clavulanic acid and piperacillin + tazobactam. Resistance rates of reserved antimicrobials to treat CRE isolates were also alarming. Thirty seven percent, 9.6% and 5.5 % of OXA-48 carbapenemase producers and 26.0%, 10.6% and 2.9% of NDM carbapenemase producers were resistant to colistin, polymyxin B and tigecycline respectively.Among the carbapenemase producing isolates, 16.6% (24) were multidrug resistant (MDR), 82.1% (119) were extensively drug resistant (XDR) and 1.3% (2) isolates were pan drug resistantwhich highlights the emerging therapeutic challenge for these superbugs. Bangladesh J Med Microbiol 2019; 13 (2): 7-10


2016 ◽  
Vol 2 (2) ◽  
pp. 49
Author(s):  
Sahar Omidpanah ◽  
Abbas Hadjiakhondi ◽  
Azadeh Manayi

Researchers have been trying to develop new broad-spectrum antibiotics against the infectious diseases caused by bacteria, fungi, viruses, and parasites for many decades. Prolonged usage of the antibiotics has led to the emergence of drug resistance among bacteria; therefore, there is a tremendous need for novel antimicrobial agents from different sources such as plants which are used in traditional medicine. The aim of this study was to evaluate antibacterial effect of <em>Achillea tenuifolia</em>.<em> </em>The plant material was extracted by maceration method using methanol three times at room temperature. The extract was concentrated after removing the solvent by rotary evaporator and then lyophilized using freeze dryer. Inhibitory effect of the extract was examined against four standard bacteria strains and two isolated strains from diseased hen using disk diffusion method and microdilution method to evaluate their inhibition zone diameter (IZD) and minimum inhibitory concentration (MIC), respectively. The results showed that the extract of the plant was active against standard strains including <em>Escherichia coli</em>, <em>Pseudomonas aeruginosa</em>, <em>Staphylococcus aureus </em>and <em>Enterococcus faecalis </em>with IZDs of 10.3±0.5, 14±0.0, 12±0.0 and 11.6±0.5, respectively.<strong> </strong>However, growths of isolated strains were not inhibited in the presence of the extract. Although, the growths of isolated strains were not inhibited by the plant extract, the standard strains were moderately susceptible to the extract; among those <em>P. aeroginosa</em> was more sensible than other tested strains


Author(s):  
Luciana Hernandez ◽  
Enriqueta Bottini ◽  
Jimena Cadona ◽  
Claudio Cacciato ◽  
Cristina Monteavaro ◽  
...  

Streptococcus agalactiae is a pathogen-associated to bovine mastitis, a health disorder responsible for significant economic losses in the dairy industry. Antimicrobial therapy remains the main strategy for the control of this bacterium in dairy herds and human In order to get insight on molecular characteristics of S. agalactiae strains circulating among Argentinean cattle with mastitis, we received 1500 samples from 56 dairy farms between 2016 and 2019. We recovered 56 S. agalactiae isolates and characterized them in relation to serotypes, virulence genes, and antimicrobial susceptibility. Serotypes III and II were the most prevalent ones (46% and 41%, respectively), followed by Ia (7%). In relation to the 13 virulence genes screened in this study, the genes spb1, hylB, cylE, and PI-2b were present in all the isolates, meanwhile, bca, cpsA, and rib were detected in different frequencies, 36%, 96%, and 59%, respectively. On the other hand, bac, hvgA, lmb, PI-1, PI-2a, and scpB genes could not be detected in any of the isolates. Disk diffusion method against a panel of eight antimicrobial agents showed an important number of strains resistant simultaneously to five antibiotics. We also detected several resistance-encoding genes, tet(M), tet(O), ermB, aphA3, and lnu(B) (9%, 50%, 32%, 32%, and 5%, respectively). The results here presented are the first molecular data on S. agalactiae isolates causing bovine mastitis in Argentina and provide a foundation for the development of diagnostic, prophylactic, and therapeutic methods, including the perspective of a vaccine.


2021 ◽  
pp. 55-61
Author(s):  
F. D. Mirzoeva ◽  
S. Satorov

Aim. To conduct a comparative assessment of the fungicidal activity of widespread and endemic species of the genus Allium growing in Tajikistan.Material and methods. The initial ethanol extracts were obtained from fresh plants of 15 onion species from different climatic and geographical regions of the Republic of Tajikistan. The antifungal activity of species of the genus Allium was studied against the yeast-like fungi Candida albicans using the disk diffusion method.Results: The highest fungicidal effect on the reference strain of Candida albicans was demonstrated by alcoholic extracts of the widespread wild species A. elatum Regel, A. oschaninii O. Fedtsch, A. obliguum L, and endemic species A. shugnanicum Vved. Low antifungal activity was found in extracts of 4 widespread wild-growing plant species - A. altaicum Pall, A. suworowii Regel, A. carolinianum DC, A.longicuspis L.Conclusions. The antifungal activity of 13 species of widespread wild-growing and 2 endemic species (A.shugnanicum Vved and A. pamiricum Wendelbo) was studied for the first time. A. elatum Regel, A. oschaninii O. Fedtsch, A. obliguum L, and endemic species A. shugnanicum Vved had a maximal inhibitory effect on the yeast fungus. The extracts obtained from the bulbs and seeds of the studied plants are characterized by the highest antifungal activity.


2020 ◽  
Vol 5 (2) ◽  
pp. 376-386
Author(s):  
Fitri Sri Rizki ◽  
◽  
Ade Ferdinan

Freycinetia sessiliflora Rizki is a plant that has secondary metabolites, namely alkaloids, flavonoids, terpenoids-steroids, saponins, phenols and tannins. This study aims to determine whether there is inhibitory and concentrated ointment extract of thick pandanus leaf of the forest that can inhibit the growth of Stapylococcus epidermidis bacteria. Inhibition testing was carried out by disk diffusion method with different concentrations of 5% and 10% concentrations made 9 ointment formulas with a variety of 3 bases namely hydrocarbon base, absorbency base and water soluble base. The results of inhibitory measurements of ethanol extract ointment leaves of pandanus leaves are good or have the greatest value to the smallest inhibitory effect on the growth of Staphylococcus epidermidis bacteria with an average diameter of inhibition at F6 of 4.11 mm, F1 of 2.78 mm, F3 of 2.68 mm, F5 of 2.47 mm, F4 of 2.25 mm, F2 of 2.23 mm, F7 of 1.29, F8 of 1.13 and F9 of 0.86 mm.


Sign in / Sign up

Export Citation Format

Share Document