scholarly journals Antimicrobial resistance in bacteria isolated from pigs with respiratory clinical signs in Brazil

Author(s):  
Maysa Serpa ◽  
Juliana Amália Fonte Bôa do Nascimento ◽  
Mirian Fátima Alves ◽  
Maria Isabel Maldonado Coelho Guedes ◽  
Adrienny Trindade Reis ◽  
...  

Antimicrobial resistance is a current and important issue to public health, and it is usually associated with the indiscriminate use of antimicrobials in animal production. This study aimed to evaluate the antimicrobial susceptibility profile in bacterial isolates from pigs with clinical respiratory signs in Brazil. One hundred sixty bacterial strains isolated from pigs from 51 pig farms in Brazil were studied. In vitro disk-diffusion method was employed using 14 antimicrobial agents: amoxicillin, penicillin, ceftiofur, ciprofloxacin, enrofloxacin, chlortetracycline, doxycycline, oxytetracycline, tetracycline, erythromycin, tilmicosin, florfenicol, lincomycin, and sulfadiazine/trimethoprim. The majority of isolates were resistant to at least one antimicrobial agent (98.75%; 158/160), while 31.25% (50/160) of the strains were multidrug resistant. Streptococcus suis and Bordetella bronchiseptica were the pathogens that showed higher resistance levels. Haemophilus parasuis showed high resistance levels to sulfadiazine/trimethoprim (9/18=50%). We observed that isolates from the midwestern and southern regions exhibited four times greater chance of being multidrug resistant than the isolates from the southeastern region studied. Overall, the results of the present study showed a great level of resistance to lincomycin, erythromycin, sulfadiazine/trimethoprim, and tetracycline among bacterial respiratory pathogens isolated from pigs in Brazil. The high levels of antimicrobial resistance in swine respiratory bacterial pathogens highlight the need for the proper use of antimicrobials in Brazilian pig farms.

2016 ◽  
Vol 11 (6) ◽  
pp. 1934578X1601100 ◽  
Author(s):  
Giovanna Pesavento ◽  
Valentina Maggini ◽  
Isabel Maida ◽  
Antonella Lo Nostro ◽  
Carmela Calonico ◽  
...  

Essential oils (EOs) are known to inhibit the growth of a wide range of microorganisms. Particularly interesting is the possible use of EOs to treat multidrug-resistant cystic fibrosis (CF) pathogens. We tested the essential oil (EO) from Origanum vulgare for in vitro antimicrobial activity, against three of the major human opportunistic pathogens responsible for respiratory infections in CF patients; these are methicillin-resistant Staphylococcus aureus, Stenotrophomonas maltophilia and Achromobacter xylosoxidans. Antibiotic susceptibility of each strain was previously tested by the standard disk diffusion method. Most strains were resistant to multiple antibiotics and could be defined as multi-drug-resistant (MDR). The antibacterial activity of O. vulgare EO (OEO) against a panel of 59 bacterial strains was evaluated, with MIC and MBC determined at 24, 48 and 72 hours by a microdilution method. The OEO was effective against all tested strains, although to a different extent. The MBC and MIC of OEO for S. aureus strains were either lower or equal to 0.50%, v/v, for A. xylosoxidans strains were lower or equal to 1% and 0.50%, v/v, respectively; and for S. maltophilia strains were lower or equal to 0.25%, v/v. The results from this study suggest that OEO might exert a role as an antimicrobial in the treatment of CF infections.


Chemotherapy ◽  
2015 ◽  
Vol 61 (2) ◽  
pp. 72-76 ◽  
Author(s):  
Hamid Lavakhamseh ◽  
Parviz Mohajeri ◽  
Samaneh Rouhi ◽  
Pegah Shakib ◽  
Rashid Ramazanzadeh ◽  
...  

Background:Escherichia coli isolates displaying multidrug-resistance (MDR) are a major health care problem that results in mortality and morbidity. Integrons are DNA elements in E.coli that are related to antibiotic resistance. The aim of this study was to determine class 1 and 2 integrons and MDR in E. coli isolates obtained from patients in two Sanandaj hospitals, located in Iran. Materials and Methods: 120 isolates of E. coli were obtained from clinical specimens (from November 2013 to April 2014), and the susceptibility of E. coli antimicrobial agents was determined using the Kirby-Bauer disk diffusion method according to the CLSI. PCR were applied for detection of class 1 and 2 integrons in E. coli isolates. SPSS software v16 and the χ2 test were used for statistical analysis in order to calculate the association between antibiotic resistance and the presence of integrons (p < 0.05). Results: In a total of 120 E. coli isolates, 42.5% had MDR. Integrons were found in 50.9% of the MDR isolates, and included 47.05% class 1 and 3.92% class 2 integrons. The strains did not have both classes of integrons simultaneously. An association between resistance to antibiotics and integrons was found. Conclusion: Our results showed that int1 and int2 genes present in E. coli isolates obtained from patients cause MDR in this isolates. Since such bacteria are a reservoir for the transmission of MDR bacteria, appropriate programs are necessary to reduce this problem.


2022 ◽  
Vol 82 ◽  
Author(s):  
Q. A. Naseer ◽  
X. Xue ◽  
X. Wang ◽  
S. Dang ◽  
S. U. Din ◽  
...  

Abstract Many pathogenic strains have acquired multidrug-resistant patterns in recent a year, which poses a major public health concern. The growing need for effective antimicrobial agents as novel therapies against multidrug-resistant pathogens has drawn scientist attention toward nanotechnology. Silver nanoparticles are considered capable of killing multidrug-resistant isolates due to their oligo-dynamic effect on microorganisms. In this research study NPs were synthesized using the gram-positive bacteria Lactobacillus bulgaricus and its activity against selected pathogenic strains. Lactobacillus bulgaricus pure cultures were isolated from raw milk and grown in “De Man, Rogasa, and Sharp” broth for synthesis of nanoparticles. Lactobacillus bulgaricus culture was centrifuged and Cell- free supernatant of it was employed with aqueous silvery ions and evaluated their antibacterial activities against bacterial strains i.e. Staphylococcus aureus, Staphylococcus epidermidis and Salmonella typhi using agar well diffusion assay. Antibiotic profiling against selected pathogenic strains were also conducted using disc diffusion method. The synthesis and characterization of silver nanoparticles were monitored primarily by the conversion of the pale-yellow color of the mixture into a dark-brown color and via ultraviolet-visible absorption spectroscopy and Scanning electron microscopy respectively. The result showed that that AgNPs with size (30.65-100 nm) obtained from Lactobacillus bulgaricus were found to exhibit antibacterial activities against selected bacterial strains. Taken together, these findings suggest that Lactobacillus bulgaricus has great potential for the production of AgNPs with antibacterial activities and highly effective in comparison to tested antibiotics.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Radiet Anbessie Tirkeso ◽  
Tilahun Wubalem Tsega ◽  
Gebru G/Tsadik Amdemichael

As multidrug resistant pathogens are emerging, the search for novel potent drug candidates is ever going. Heterocycles are known by their broad spectrum of biological activities, so a search for a new drug from heterocycles can elevate the chance of success. The aim of this study was to obtain novel potent antimicrobial compounds. In line with this, 1H-imidazo [5, 6-f] [1,10] phenanthroline-2(3H)-thione and its complexes (Ni(II) and Cu(II)) were synthesized, characterized, and evaluated against bacterial strains. The compounds were characterized by elemental analyses (C, H, N, and S), FT-IR, 1H-NMR, 13C-NMR, AAS, UV-Vis spectra, and molar conductivity measurement. The results showed that the ligand is bidentate, and the molar conductivity measurement indicates that complexes are electrolytic. Electronic spectral study showed octahedral and distorted octahedral geometry for the Ni(II) and Cu(II) complex, respectively. The ligand and its complexes were screened against four bacterial strains using disk diffusion method. The result revealed that the Ni(II) complex showed more bioactivity than gentamicin against Staphylococcus aureus and Escherichia coli, while the Cu(II) complex is more active than the Ni(II) complex against Bacillus subtilis. Both Cu(II) and Ni(II) complexes exhibit higher antibacterial activities than the free ligand.


2002 ◽  
Vol 65 (11) ◽  
pp. 1796-1799 ◽  
Author(s):  
ANN MARIE PRAZAK ◽  
ELSA A. MURANO ◽  
IMELDA MERCADO ◽  
GARY R. ACUFF

Twenty-one isolates of Listeria monocytogenes from cabbage, environmental, and water samples were evaluated for antimicrobial resistance by the disk diffusion method. Ninety-five percent (20 of 21) of the isolates tested were resistant to two or more antimicrobial agents. This finding is significant, since multiresistant strains of Listeria spp. are not commonly found in nature. Eighty-five percent (17 of 20) of the multiresistant strains were resistant to penicillin, and the remaining multiresistant isolates were somewhat sensitive to penicillin. A multiresistant strain showing intermediate sensitivity to penicillin was resistant to gentamicin. One isolate was susceptible to all antimicrobial agents except penicillin. Penicillin- and gentamicin-resistant L. monocytogenes have not previously been reported from human, food, or environmental samples. This study provides evidence of the emergence of multiresistant L. monocytogenes strains, pointing to an increase in the potential threat to human health posed by this pathogen.


Foods ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 439 ◽  
Author(s):  
Vanessa Silva ◽  
Telma de Sousa ◽  
Paula Gómez ◽  
Carolina Sabença ◽  
Madalena Vieira-Pinto ◽  
...  

Methicillin-resistant Staphylococcus aureus (MRSA) are one of the main pathogens associated with purulent infections. MRSA clonal complex 97 (CC97) has been identified in a wide diversity of livestock animals. Therefore, we aimed to investigate the antibiotic resistance profiles of MRSA strains isolated from purulent lesions of food-producing rabbits. Samples from purulent lesions of 66 rabbits were collected in a slaughterhouse in Portugal. Samples were seeded onto ORSAB plates with 2 mg/L of oxacillin for MRSA isolation. Susceptibility to antibiotics was tested by the disk diffusion method against 14 antimicrobial agents. The presence of resistance genes, virulence factors and the immune evasion cluster (IEC) system was studied by polymerase chain reaction. All isolates were characterized by multilocus sequence typing (MLST), agr and spa typing. From the 66 samples analyzed, 16 (24.2%) MRSA were detected. All strains were classified as multidrug-resistant as they were resistant to at least three classes of antibiotics. All isolates showed resistance to penicillin, erythromycin and clindamycin. Seven isolates were resistant to gentamicin and harbored the aac(6′)-Ie-aph (2″)-Ia gene. Resistance to tetracycline was detected in 10 isolates harboring the tet(K) gene. The IEC genes were detected in three isolates. MRSA strains belonged to CC97, CC1, CC5, CC15 or CC22. The isolates were assigned to six different spa types. In this study we found a moderate prevalence of multidrug-resistant MRSA strains in food-producing rabbits. This may represent concern for food safety and public health, since cross-contamination may occur, leading to the spread of MRSA and, eventually, the possibility of ingestion of contaminated meat.


Author(s):  
Addisu Assefa ◽  
Mengistu Girma

Abstract Background Diarrheal diseases are responsible for high level of morbidity and mortality, particularly in children below 5 years. Salmonella and Shigella spp. are pathogenic microbes responsible for the major diarrheal associated mortality. The purpose of this study was to determine the prevalence, factors associated with Salmonella and Shigella isolates infections and their antimicrobial susceptibility patterns among diarrheic children aged below 5 years attending BRGH and GRH, Ethiopia. Methods A health institution based cross-sectional study was conducted from April to July 2016. One stool samples was collected from 422 diarrheic children under the ages of five and were cultured on to Hektoen Enteric (HE) and Salmonella-Shigella agar. Isolation identification of the Salmonella and Shigella isolates were conducted using standard bacteriological methods. Antibiotic susceptibility was done by Kirby–Bauer disk diffusion method. The isolates were defined as multidrug resistant if it was resistant to two or more antimicrobial agents. Descriptive statistics were employed and logistic regression models were constructed to determine factors associated with Shigella/Salmonella prevalence. Results The prevalence of Salmonella and Shigella isolates were 6.9 and 4.3%, respectively. Children aged between 1 to 3 years were significantly associated with Salmonella infection [AOR = 19.08, 95% CI (2.68–135.86)]. The odd of prevalence of Salmonella/Shigella isolates was significantly associated with absence of latrine, absence of hand washing after latrine, and in unimmunized children in adjusted odd ratio. Unimproved water sources and hand washing before meal had also higher odd of prevalence although the difference was not significant. All Salmonella and Shigella isolates were resistant to amoxicillin (100%). In addition, all Shigella isolates were completely resistant to chloramphenicol, and tetracycline, and were multidrug resistant. However, all Salmonella and Shigella isolates were susceptible to ciprofloxacin and ceftriaxone. Conclusion There was a relatively low prevalence of Salmonella and Shigella species in the study areas and were significantly associated with lack of personal hygiene and environmental sanitation. There were also higher drug resistance and multidrug resistant pattern. Personal hygiene and environmental sanitation, including access to latrine and supply of safe drinking water are suggested. Checking susceptibilities of Shigella and Salmonella isolates causing diarrhea is also suggested.


2010 ◽  
Vol 73 (9) ◽  
pp. 1613-1617 ◽  
Author(s):  
SEZA ARSLAN ◽  
AYLA EYI

In the present study, a total of 225 retail meat products (poultry meat, ground beef, and beef samples) were tested for the prevalence of Salmonella. Of these, 50 (22.2%) were positive for Salmonella. Overall, the pathogen was detected in 22 (29.3%) samples of poultry meat (n = 75), 16 (21.3%) samples of ground beef (n = 75), and 12 (16%) samples of beef (n = 75). The most common isolate was Salmonella enterica serovar Typhimurium (9.8%), followed by S. bongori species (8.9%) and S. enterica subsp. diarizonae (3.5%). The Salmonella strains isolated were also examined for antimicrobial resistance patterns and production of β-lactamase enzyme. The resistance levels of the isolates against 14 different antimicrobial agents were tested by the disk diffusion method. None of the strains exhibited resistance to cefotaxime, ciprofloxacin, norfloxacin, or levofloxacin. However, the highest resistance rates in the meat isolates were 64% each for ampicillin and cephazolin and 56% for amoxicillin–clavulanic acid. A total of 62% of the 50 Salmonella strains were multiresistant to three or more antimicrobial agents. The exhibited multiple resistance to four or more antimicrobial drugs was 32%. Furthermore, none of the isolates had β-lactamase enzyme activity.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 844
Author(s):  
Pichapak Sriyapai ◽  
Chaiwat Pulsrikarn ◽  
Kosum Chansiri ◽  
Arin Nyamniyom ◽  
Thayat Sriyapai

The antimicrobial resistance of nontyphoidal Salmonella has become a major clinical and public health problem. Southeast Asia has a high level of multidrug-resistant Salmonella and isolates resistant to both fluoroquinolone and third-generation cephalosporins. The incidence of co-resistance to both drug classes is a serious therapeutic problem in Thailand. The aim of this study was to determine the antimicrobial resistance patterns, antimicrobial resistance genes and genotypic relatedness of third-generation cephalosporins and/or fluoroquinolone-resistant Salmonella Choleraesuis isolated from patients with systemic salmonellosis in Thailand. Antimicrobial susceptibility testing was performed using the agar disk diffusion method, and ESBL production was detected by the combination disc method. A molecular evaluation of S. Choleraesuis isolates was performed using PCR and DNA sequencing. Then, a genotypic relatedness study of S. Choleraesuis was performed by pulse field gel electrophoresis. All 62 cefotaxime-resistant S. Choleraesuis isolates obtained from 61 clinical specimens were multidrug resistant. Forty-four isolates (44/62, 71.0%) were positive for ESBL phenotypes. Based on the PCR sequencing, 21, 1, 13, 23, 20 and 6 ESBL-producing isolates harboured the ESBL genes blaCTX-M-14, blaCTX-M-15, blaCTX-M-55, blaCMY-2, blaACC-1 and blaTEM-1, respectively. This study also found that nine (9/62, 14.5%) isolates exhibited co-resistance to ciprofloxacin and cefotaxime. All of the co-resistant isolates harboured at least one PMQR gene. The qnr genes and the aac(6′)-Ib-cr gene were the most prevalent genes detected. The QRDR mutation, including the gyrA (D87Y and D87G) and parC (T57S) genes, was also detected. PFGE patterns revealed a high degree of clonal diversity among the ESBL-producing isolates.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (07) ◽  
pp. 5-9
Author(s):  
R. G Ingle ◽  
◽  
S. J. Wadher

A set of ten new 2,3-diphenyl-6-sulfonamido quinoxaline derivatives was synthesized and screened for antimicrobial activity by disk diffusion method. Test derivatives R3, R5, R’’1 and R’’2 show promising results against bacterial strains S. aureus gram positive and E. coli gram negative organism with the concentration 1000 μg/mL in disk diffusion method. Rest of the derivatives show sensitivity against the same organisms. All the synthesized derivatives were confirmed by their spectral data.


Sign in / Sign up

Export Citation Format

Share Document