Molecular Mechanisms of TanshinoneIIA in Hepatocellular carcinomatherapy via WGCNA-based Network Pharmacology Analysis

Author(s):  
Han Zhao ◽  
Jing Guo ◽  
Qingjia Chi ◽  
Meng Fang

Abstract Background: Hepatocellular carcinoma (HCC) is a worldwide malignant tumor that caused irreversible consequences. The studies of Tanshinone IIA showed that Tanshinone IIA has played a notable role in HCC treatment. However, it is still to be investigated to discover the potential targets and associating mechanism of Tanshinone IIA against HCC. Methods: To analyze the correlation between genes and specific clinical features, we applied weighted gene co-expression network analysis (WGCNA), which can help us identify the targets of Tanshinone IIA related to the clinical features of Hepatocellular carcinoma. Results: We screened out 105 overlapping genes by integrating the predicted targets of Tanshinone IIA and the gene expression profile of HCC from the Cancer Genome Atlas (TCGA) database. For WGCNA, we used the RNA-seq profile of the overlapping genes and the related clinical information of HCC from TCGA. And 23 genes related to clinical tumor grade in the important module (R2 = 0.37) were imported for Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and protein-protein interaction (PPI) analysis. Compared to the key genes in the significant module from WGCNA with the high connectivity nodes from the PPI network, we can analyze three hub genes, AURKB, KIF11, and PLK1, for further verification. We tested the binding of Tanshinone IIA to the targets of Hepatocellular carcinoma using Autodock Vina. The survival curve validated that the three hub genes represented a poor prognosis. Receiver operating characteristic (ROC) curves demonstrated that the three hub genes were effective in diagnosis. The mRNA expression of the three hub genes was upregulated in the HCC than the normal. AURKB, KIF11 and PLK1 were further upregulated in advanced tumor stage and grade. Moreover, AURKB, KIF11 and PLK1 also had higher protein expression in HCC tissues. Conclusions: In the study, WGCNA revealed grade-specific gene modules, indicating that Tanshinone IIA probably plays its therapeutical effect in the differentiation process of HCC. And the study partly interpreted the pharmacological mechanism of Tanshinone IIA against HCC.

Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1503
Author(s):  
Oscar Wai Ho Yeung ◽  
Xiang Qi ◽  
Li Pang ◽  
Hui Liu ◽  
Kevin Tak Pan Ng ◽  
...  

Background and Aims—Transforming growth factor-beta (TGF-β) signaling orchestrates tumorigenesis and one of the family members, TGF-β receptor type III (TGFβR3), are distinctively under-expressed in numerous malignancies. Currently, the clinical impact of TGFβR3 down-regulation and the underlying mechanism remains unclear in hepatocellular carcinoma (HCC). Here, we aimed to identify the tumor-promoting roles of decreased TGFβR3 expression in HCC progression. Materials and Methods—For clinical analysis, plasma and liver specimens were collected from 100 HCC patients who underwent curative resection for the quantification of TGFβR3 by q-PCR and ELISA. To study the tumor-promoting mechanism of TGFβR3 downregulation, HCC mouse models and TGFβR3 knockout cell lines were applied. Results—Significant downregulation of TGFβR3 and its soluble form (sTGFβR3) were found in HCC tissues and plasma compared to healthy individuals (p < 0.01). Patients with <9.4 ng/mL sTGFβR3 exhibited advanced tumor stage, higher recurrence rate and shorter disease-free survival (p < 0.05). The tumor-suppressive function of sTGFβR3 was further revealed in an orthotopic mouse HCC model, resulting in 2-fold tumor volume reduction. In TGFβR3 knockout hepatocyte and HCC cells, increased complement component C5a was observed and strongly correlated with shorter survival and advanced tumor stage (p < 0.01). Interestingly, C5a activated the tumor-promoting Th-17 response in tumor associated macrophages. Conclusion—TGFβR3 suppressed tumor progression, and decreased expression resulted in poor prognosis in HCC patients through upregulation of tumor-promoting complement C5a.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Xing Yao ◽  
Huazong Zeng ◽  
Guolei Zhang ◽  
Weimin Zhou ◽  
Qiang Yan ◽  
...  

Aim. To evaluate the possible association between the vitamin D receptor (VDR), single-nucleotide polymorphisms (SNPs), and hepatocellular carcinoma (HCC) in patients with chronic hepatitis B virus (HBV) infection.Method. 968 chronic HBV infection patients were enrolled, of which 436 patients were diagnosed HCC patients, and 532 were non-HCC patients. The clinicopathological characteristics of HCC were evaluated. The genotypes of VDR gene at FokI, BsmI, ApaI, and TaqI were determined.Results. The genotype frequencies of VDR FokI C>T polymorphism were significantly different between HCC and non-HCC groups. HCC patients had a higher prevalence of FokI TT genotype than non-HCC subjects. With FokI CC as reference, the TT carriage had a significantly higher risk for development of HCC after adjustments with age, sex, HBV infection time,α-fetoprotein, smoking status, and alcohol intake. In addition, we also found that the TT genotype carriage of FokI polymorphisms were associated with advanced tumor stage, presence of cirrhosis, and lymph node metastasis. The SNP at BsmI, ApaI, and TaqI did not show positive association with the risk and clinicopathological features of HCC.Conclusion. The FokI C>T polymorphisms may be used as a molecular marker to predict the risk and to evaluate the disease severity of HCC in those infected with HBV.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiang Ma ◽  
Gang Wang ◽  
Hao Fan ◽  
Zengliang Li ◽  
Wangwang Chen ◽  
...  

AbstractGastric cancer (GC) is a global health problem and further studies of its molecular mechanisms are needed to identify effective therapeutic targets. Although some long noncoding RNAs (lncRNAs) have been found to be involved in the progression of GC, the molecular mechanisms of many GC-related lncRNAs remain unclear. In this study, a series of in vivo and in vitro assays were performed to study the relationship between FAM225A and GC, which showed that FAM225A levels were correlated with poor prognosis in GC. Higher FAM225A expression tended to be correlated with a more profound lymphatic metastasis rate, larger tumor size, and more advanced tumor stage. FAM225A also promoted gastric cell proliferation, invasion, and migration. Further mechanistic investigation showed that FAM225A acted as a miR-326 sponge to upregulate its direct target PADI2 in GC. Overall, our findings indicated that FAM225A promoted GC development and progression via a competitive endogenous RNA network of FAM225A/miR-326/PADI2 in GC, providing insight into possible therapeutic targets and prognosis of GC.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Yi Shi ◽  
Xiaofei Mo ◽  
Simei Hong ◽  
Tianbao Li ◽  
Baozhen Chen ◽  
...  

Sorafenib is the first FDA-approved therapeutic drug for molecular target medication on advanced-stage hepatocellular carcinoma. It is reported that sorafenib could improve the survival of progression-free patients for 4 to 6 months; however, most of the patients developed drug resistance. Thus, it is critical to reveal the biological mechanisms behind sorafenib resistance. In this study, a sorafenib-resistant model was developed by exposing HepG2 cells to sorafenib with gradient increasing concentration, and the resistance-related genes were screened by microarray. Real-time qPCR was used to validate selected gene expression of the resistance model, and lentivirus vector-mediated RNA interference was applied for specific gene knockdown. In addition, high-throughput High Celigo Select (HCS) and flow cytometry were used to measure the effect on cellular proliferation and apoptosis. As a result, our study established a sorafenib-resistant model with IC50 of 9.988 μM. The Affymetrix expression profile of the sorafenib-resistant model showed 35 resistant-related genes, and 91.4% of the resistant genes showed upregulation in HepG2 resistance cells. In addition, 20 genes were knocked down to measure cell proliferation, and MAP4K3 with high proliferation inhibiting phenotype was chosen for further study. Meanwhile, the HCS results revealed that shMAP4K3 transfection could downregulate resistant cell proliferation, and the flow cytometry results showed that cell apoptosis was significantly increased in the MAP4K3 knockdown group. In summary, MAP4K3 is a novel molecular marker for improving the drug sensitivity of sorafenib treatment in hepatocellular carcinoma.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Jiayan Wu ◽  
Shengkun Hong ◽  
Xiankuan Xie ◽  
Wangmi Liu

Objective. Dipsaci Radix (DR) has been used to treat fracture and osteoporosis. Recent reports have shown that myeloid cells from bone marrow can promote the proliferation of lung cancer. However, the action and mechanism of DR has not been well defined in lung cancer. The aim of the present study was to define molecular mechanisms of DR as a potential therapeutic approach to treat lung cancer. Methods. Active compounds of DR with oral bioavailability ≥30% and drug-likeness index ≥0.18 were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform. The potential target genes of the active compounds and bone were identified by PharmMapper and GeneCards, respectively. The compound-target network and protein-protein interaction network were built by Cytoscape software and Search Tool for the Retrieval of Interacting Genes webserver, respectively. GO analysis and pathway enrichment analysis were performed using R software. Results. Our study demonstrated that DR had 6 active compounds, including gentisin, sitosterol, Sylvestroside III, 3,5-Di-O-caffeoylquinic acid, cauloside A, and japonine. There were 254 target genes related to these active compounds as well as to bone. SRC, AKT1, and GRB2 were the top 3 hub genes. Metabolisms and signaling pathways associated with these hub genes were significantly enriched. Conclusions. This study indicated that DR could exhibit the anti-lung cancer effect by affecting multiple targets and multiple pathways. It reflects the traditional Chinese medicine characterized by multicomponents and multitargets. DR could be considered as a candidate for clinical anticancer therapy by regulating bone physiological functions.


2020 ◽  
Vol 48 (01) ◽  
pp. 161-182 ◽  
Author(s):  
Jihan Huang ◽  
Wei Guo ◽  
Fan Cheung ◽  
Hor-Yue Tan ◽  
Ning Wang ◽  
...  

Unlike Western medicines with single-target, the traditional Chinese medicines (TCM) always exhibit diverse curative effects against multiple diseases through its “multi-components” and “multi-targets” manifestations. However, discovery and identification of the major therapeutic diseases and the underlying molecular mechanisms of TCM remain to be challenged. In the current study, we, for the first time, applied an integrated strategy by combining network pharmacology with experimental evaluation, for exploration and demonstration of the therapeutic potentials and the underlying possible mechanisms of a classic TCM formula, Huanglian Jiedu decoction (HLJDD). First, the herb–compound, compound–protein, protein–pathway, and gene–disease networks were constructed to predict the major therapeutic diseases of HLJDD and explore the underlying molecular mechanisms. Network pharmacology analysis showed the top one predicted disease of HLJDD treatment was cancer, especially hepatocellular carcinoma (HCC) and inflammation-related genes played an important role in the treatment of HLJDD on cancer. Next, based on the prediction by network pharmacology analysis, both in vitro HCC cell and in vivo orthotopic HCC implantation mouse models were established to validate the curative role of HLJDD. HLJDD exerted its antitumor activity on HCC in vitro, as demonstrated by impaired cell proliferation and colony formation abilities, induced apoptosis and cell cycle arrest, as well as inhibited migratory and invasive properties of HCC cells. The orthotopic HCC implantation mouse model further demonstrated the remarkable antitumour effects of HLJDD on HCC in vivo. In conclusion, our study demonstrated the effectiveness of integrating network pharmacology with experimental study for discovery and identification of the major therapeutic diseases and the underlying molecular mechanisms of TCM.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Yongfu Xiong ◽  
Wenxian You ◽  
Rong Wang ◽  
Linglong Peng ◽  
Zhongxue Fu

Although hundreds of colorectal cancer- (CRC-) related genes have been screened, the significant hub genes still need to be further identified. The aim of this study was to identify the hub genes based on protein-protein interaction network and uncover their clinical value. Firstly, 645 CRC patients’ data from the Tumor Cancer Genome Atlas were downloaded and analyzed to screen the differential expression genes (DEGs). And then, the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis was performed, and PPI network of the DEGs was constructed by Cytoscape software. Finally, four hub genes (CXCL3, ELF5, TIMP1, and PHLPP2) were obtained from four subnets and further validated in our clinical setting and TCGA dataset. The results showed that mRNA expression of CXCL3, ELF5, and TIMP1 was increased in CRC tissues, whereas PHLPP2 mRNA expression was decreased. More importantly, high expression of CXCL3, ELF5, and TIMP1 was significantly associated with lymphatic invasion, distance metastasis, and advanced tumor stage. In addition, a shorter overall survival was observed in patients with increased CXCL3, TIMP1, and ELF5 expression and decreased PHLPP2 expression. In conclusion, the four hub genes screened by our strategy could serve as novel biomarkers for prognosis prediction of CRC patients.


2021 ◽  
Vol 18 (10) ◽  
pp. 2067-2074
Author(s):  
Yun-Bin Jiang ◽  
Mei Zhong ◽  
Ting Huang ◽  
Zhong-Hua Dai ◽  
Xing-Bao Tao ◽  
...  

Purpose: To determine the molecular mechanism involved in the anti-migraine effect of Asari Radix et Rhizoma (ARR) using network pharmacology. Methods: The compounds present in ARR were identified through information retrieval from literature and public databases, and were screened based on absorption, distribution, metabolism, excretion and toxicity. Target genes related to the selected compounds and migraine were identified or predicted from public databases. Hub genes in ARR against migraine were identified through analysis of interactions in overlapping genes between compounds and migraine target genes, based on STRING database. Gene enrichment analysis of overlapping genes was performed using Database for Annotation, Visualization and Integrated Discovery. Results: A total of 138 compounds were selected as potential bioactive compounds in ARR. Target genes related to the selected compounds (611 genes) and migraine (278 genes) were obtained, including 71 overlapping genes. The hub genes in the anti-migraine effect of ARR were BDNF, IL6, COMT, APP and TNF. Gene enrichment analysis showed the top 10 biological processes or pathways involved in the mechanism of anti-migraine action of ARR. The tissue source of the overlapping genes was not limited to the brain. The results from gene enrichment analysis revealed that the effect of ARR on migraine was holistic, which is characteristic of traditional Chinese medicines. Conclusion: Network pharmacology has been used to decipher the molecular mechanism involved in the action of ARR against migraine. The results provide a scientific basis for the clinical effect of ARR on migraine.


2021 ◽  
Vol 11 ◽  
Author(s):  
Chen Xue ◽  
Yalei Zhao ◽  
Ganglei Li ◽  
Lanjuan Li

The ALYREF protein acts as a crucial epigenetic regulator in several cancers. However, the specific expression levels and functional roles of ALYREF in cancers are largely unknown, including for hepatocellular carcinoma (HCC). In a pan-cancer tissue analysis that included HCC, we assessed the expression of ALYREF compared to normal tissues using The Cancer Genome Atlas database. Associations between ALYREF gene expression and the clinical characteristics of HCC patient samples were assessed using the UALCAN database. Kaplan-Meier plots were performed to assess HCC patient prognosis, and the TIMER database was used to explore associations between ALYREF expression and immune-cell infiltrations. The same methods were used to assess eIF4A3 expression in HCC patient samples. In addition, ALYREF- and elF4A3-related differentially expressed genes (DEGs) were determined using LinkedOmics, associated protein functionalities were predicted for positively associated DEGs, and both the TargetScan and miRDB databases were used to predict potential upstream miRNAs for control of ALYREF and eIF4A3 expression. We found that ALYREF gene expression was dysregulated in several cancers and was significantly elevated in HCC patient tissue samples and HCC cell lines. The overexpression of ALYREF was significantly related to both advanced tumor-node-metastasis stages and poor HCC prognosis. Furthermore, we found that eIF4A3 expression was significantly correlated with ALYREF expression, and that upregulated eIF4A3 was significantly associated with poor HCC patient outcomes. In the protein-protein interaction network, we identified eight hub genes based on the positively associated DEGs in common between ALYREF and eIF4A3, and the high expression levels of these hub genes were positively associated with patient clinical outcomes. In addition, we identified miR-4666a-5p and miR-6124 as potential regulators of ALYREF and eIF4A3 expression. These findings suggest that increased ALYREF expression may function as a novel biomarker for both HCC diagnosis and prognosis predictions.


Sign in / Sign up

Export Citation Format

Share Document