scholarly journals Effect of Mn Doping on The Structural, Optical, Magnetic Properties and Antibacterial Activity of ZnO Nanospheres

Author(s):  
EBENEZAR JEYASINGH ◽  
Kelvin Adaikalam Charles ◽  
Pandiyarajan Thangaraj ◽  
Karthikeyan Chandrasekaran ◽  
Mangalaraja Ramalinga Viswanathan

Abstract In this work, a systematic study of structural, optical, magnetic and antibacterial properties of Mn doped ZnO has been investigated. Zinc oxide (ZnO) and Mn2+ doped zinc oxide (ZnMnO) nanoparticles (NPs) were prepared through co-precipitation method. The X-ray diffraction studies confirmed that the synthesize nanoparticles did not modify the crystal structure upon Mn doping, but the microstructural parameters were changed considerably while increasing the concentration of Mn dopant. The HRTEM images showed that the ZnO NPs were exhibited nanospheres like morphology and a reduction in the average particle size from 41 nm to 33 nm were observed upon Mn2+ doping. The elemental composition of Zn, Mn and O atoms were identified by EDAX spectra. The Zn-O stretching bands were observed at 539 and 525cm-1 in the FTIR spectra and, the zinc and oxygen vacancies defects were confirmed by PL spectra. From the UV-Vis spectra, the band gap was estimated as 2.7 eV for pure and 2.9 eV for Mn doped ZnO NPs. The Mn doped ZnO NPs showed greater antibacterial effect than the pure ZnO NPs. The magnetization measurements for Mn doped ZnO samples under room temperature ferromagnetism (RTFM) showed the ferromagnetic phase that could originated from the interactions between Mn2+ ions and oxygen vacancies and the defects incorporated in the ZnO matrix.

2021 ◽  
Vol 17 (9) ◽  
pp. 1824-1829
Author(s):  
Junlin Li ◽  
Xiangfei Li ◽  
Dong Liang ◽  
Xiaojuan Zhang ◽  
Qing Lin ◽  
...  

This study exploits the potential of zinc oxide nanoparticles (ZnO-NPs) with diverse morphologies as catalysts and antibacterial agent. Spherical ZnO-NPs, rod-shaped ZnO-NPs and flower-shaped ZnO-NPs were prepared by microemulsion method, solvent heat method and hydrothermal method, respectively. The structural characterizations of samples were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. XRD results revealed the formation of spherical ZnO-NPs, rod-shaped ZnO-NPs and flower-shaped ZnO-NPs were all wurtzite crystal structure. SEM results showed that spherical ZnO-NPs had an average particle size of 30–40 nm, rod-shaped ZnO-NPs were about 500 nm long and 100 nm wide with obvious hexagonal crystals. Flower-shaped ZnO-NPs had a three-dimensional appearance with obvious petals. Results of electrochemical HER (Hydrogen evolution reaction) experiments revealed that spherical ZnO-NPs exhibited the highest electrocatalytic activity at the lowest potential voltage due to their largest specific surface area. The antibacterial property of ZnO-NPs samples were studied by the optical density method and disc diffusion method. All samples had antibacterial effects against E. coli. and flower-shaped ZnO-NPs showed the best antibacterial activity due to the largest surface area in comparison with spherical ZnO-NPs and rod-shaped ZnO-NPs, which promised the maximum Zn2+ release as bactericide mechanism that registered in the case of different ZnO-NPs morphologies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Traian Popescu ◽  
Christien Oktaviani Matei ◽  
Ioana Dorina Vlaicu ◽  
Ioan Tivig ◽  
Andrei Cristian Kuncser ◽  
...  

Abstract The present study concerns the in vitro oxidative stress responses of non-malignant murine cells exposed to surfactant-tailored ZnO nanoparticles (NPs) with distinct morphologies and different levels of manganese doping. Two series of Mn-doped ZnO NPs were obtained by coprecipitation synthesis method, in the presence of either polyvinylpyrrolidone (PVP) or sodium hexametaphosphate (SHMTP). The samples were investigated by powder X-ray Diffraction, Transmission Electron Microscopy, Fourier-Transform Infrared and Electron Paramagnetic Resonance spectroscopic methods, and N2 adsorption–desorption analysis. The observed surfactant-dependent effects concerned: i) particle size and morphology; ii) Mn-doping level; iii) specific surface area and porosity. The relationship between the surfactant dependent characteristics of the Mn-doped ZnO NPs and their in vitro toxicity was assessed by studying the cell viability, intracellular reactive oxygen species (ROS) generation, and DNA fragmentation in NIH3T3 fibroblast cells. The results indicated a positive correlation between the specific surface area and the magnitude of the induced toxicological effects and suggested that Mn-doping exerted a protective effect on cells by diminishing the pro-oxidative action associated with the increase in the specific BET area. The obtained results support the possibility to modulate the in vitro toxicity of ZnO nanomaterials by surfactant-controlled Mn-doping.


2020 ◽  
Vol 11 (1) ◽  
pp. 747-754
Author(s):  
Saja S. Al-Taweel ◽  
Rana S. Al-Taweel ◽  
Hasan M. Luaibi

In this work, zinc oxide nanoparticles (ZnO - NPs) were prepared using a sol-gel methodology and tested for their antibacterial activity against each of the following pathogenic species: Escherichia coli, Klebsiella pneumonia, and Staphylococcus aureus by well diffusion assay. The sample prepared was characterized by different techniques: Atomic Force Microscope AFM; Fourier Transform Infrared FT-IR; Scanning Electron Microscope SEM and X-Ray Diffraction Spectroscopy XRD. The XRD result showed that ZnO - NPs presence in wurtzite the structure of ZnO. The AFM and SEM of the surface analysis indicate that the most ZnO – NPs appear approximately in a spherical shape with some agglomeration. The average particle size for  ZnO - NPs is nearly 37 nm. Volumes 25µl, 50µl, 75µl, 100µl, 125µl, and 150µl of 10 mg\ ml concentration of  ZnO - NPs were used, the antimicrobial activity results showed that ability for  ZnO - NPs to inhibit the growth of S.aureus increased as the solution volume increased, while the growing of (K. pneumonia) and (E. coli) was inhibited only with the volume 75µl where the inhibition zones diameters were 15mm and 10mm respectively.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1682
Author(s):  
Maymounah N. Alharthi ◽  
Iqbal Ismail ◽  
Stefano Bellucci ◽  
Nezar H. Khdary ◽  
Mohamed Abdel Salam

The present work is intended to biosynthesize zinc oxide nanoparticles (ZnO NPs) via facile and modern route using aqueous Ziziphus jujuba leaves extract assisted by microwave and explore their photocatalytic degradation of methyl orange anionic dye and methylene blue cationic dye under solar irradiation. The biosynthesized microwave assisted ZnO NPs were characterized and the results showed that ZnO NPs contain hexagonal wurtzite and characterized with a well-defined spherical-like shape with an outstanding band gap (2.70 eV), average particle size of 25 nm and specific surface area of 11.4 m2/g. The photocatalytic degradation of the MO and MB dyes by biosynthesized ZnO NPs under solar irradiation was studied and the results revealed the selective nature of the ZnO NPs for the adsorption and further photocatalytic degradation of the MO dye compared to the MB dye. In addition, the photocatalytic degradation of MO and MB dyes by the ZnO NPs under solar radiation was fitted by the first-order kinetics. Moreover, the photodegradation mechanism proposed that superoxide ions and hydroxyl radicals are the main reactive species.


2021 ◽  
Author(s):  
Udari Wijesinghe ◽  
Gobika Thiripuranathar ◽  
Haroon Iqbal ◽  
Farid Menaa ◽  
Anam Razaaq

Abstract In recent years, biosynthesized zinc oxide nanoparticles (ZnO NPs) are gaining importance due to their unique properties and tremendous applications. This study aimed to fabricate ZnO NPs by using extracts from various parts (i.e. stems, leaves, and inflorescences) of the traditional medicinal plant Heliotropium indicum (H. indicum) and to identify their photocatalysis, photoluminescence, and fluorescence resonance energy transfer (FRET) efficacy. The Ultraviolet-Visible (UV-Vis) spectrum was used to monitor the nanoparticles (NPs) formation, which exhibited a hypsochromic shifted absorption band between 360-370 nm. Fourier transform infrared (FTIR) analysis was carried out for the plant extracts and NPs to identify possible functional groups involved in the capping process. Transmission electron microscopy (TEM) analysis revealed NPs were spherical in shape and X-ray diffraction (XRD) results shown their wurtzite, hexagonal crystalline nature. Further, TEM and XRD consistently determined the average particle size ranging from 19 to 53 nm with more accuracy than scanning electron microscope (SEM). Dynamic light scattering (DLS) showed that the particles were well distributed and monodispersed. The maximum photocatalytic degradation of 95% was evaluated for biogenic ZnO NPs spectrophotometrically by monitoring the degradation of methylene blue (MB) dye (λmax = 662.8 nm) under solar irradiation. Photoluminescence (PL) analysis, revealed differentiated spectra with high-intensity emission peaks for biogenic ZnO NPs compared to chemically synthesized ZnO NPs. Eventually, the highest efficiency of FRET (80%) was found in ZnO NPs synthetized from the leaves. This remains the first attempt to synthesize multifunctional ZnO NPs using H. indicum for potential environmental and biomedical applications.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3029
Author(s):  
Naresh Kumar Rajendran ◽  
Blassan P. George ◽  
Nicolette N. Houreld ◽  
Heidi Abrahamse

Recently, the biosynthesis of zinc oxide nanoparticles (ZnO NPs) from crude extracts and phytochemicals has attracted much attention. Green synthesis of NPs is cost-effective, eco-friendly, and is a promising alternative for chemical synthesis. This study involves ZnO NPs synthesis using Rubus fairholmianus root extract (RE) as an efficient reducing agent. The UV spectrum of RE-ZnO NPs exhibited a peak at 357 nm due to intrinsic bandgap absorption and an XRD pattern that matches the ZnO crystal structure (JCPDS card no: 36-1451). The average particle size calculated from the Debye–Scherrer equation is 11.34 nm. SEM analysis showed that the RE-ZnO NPs spherical in shape with clusters (1–100 nm). The antibacterial activity of the NPs was tested against Staphylococcus aureus using agar well diffusion, minimum inhibitory concentration, and bacterial growth assay. The R. fairholmianus phytochemicals facilitate the synthesis of stable ZnO NPs and showed antibacterial activity.


2021 ◽  
Vol 39 (1B) ◽  
pp. 197-202
Author(s):  
Ghufran S. Jaber ◽  
Khawla S. Khashan ◽  
Maha J. Abbas

The effects of varying laser pulse numbers on the fabricated of ZnONPs by pulsed laser ablation in deionized water of Zn-metal are investigated. The Nd: YAG laser at energy 600mJ prepared three samples by change the laser pulse number (100, 150, and 200). The results were collected and examined using an electron scanning microscope, XRD – diffraction, and transmission electron microscope. The result revealed the colloidal spherical shape and the homogeneous composition of the ZnO NPs. The nanoparticles resulted in different concentrations and sized distributions by changing the pulse number of a laser. The average particle size and the mass concentration of particle size increase with an increasing number of laser pulses by fixed the laser energy.


2018 ◽  
Vol 4 (4) ◽  
pp. 135-141 ◽  
Author(s):  
V. Porkalai ◽  
B. Sathya ◽  
D. Benny Anburaj ◽  
G Nedunchezhian ◽  
S. Joshua Gnanamuthu ◽  
...  

Recently, transition metal (TM) and rare earth ion doped II–VI semiconductor nanoparticles have received much attention because such doping can modify and improve optical properties of II–VI semiconductor nanoparticles by large amount. In this study, undoped, La doped and La+Ag co-doped ZnO nano particles have been successfully synthesized by sol-gel method using the mixture of Zinc acetate dihydrate and ethanol solution. The powders were calcinated at 600 °C for 2 h. The effect of lanthanum and lanthanum-silver incorporation on the structure, morphology, optical and electrical conductivity were examined by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Absorption (EDAX), Fourier transform infrared spectroscopy (FTIR), UV and Photo Luminescence (PL) Characterization. The average particle size of the synthesized ZnO nanoparticles is calculated using the Scherrer formula and is found to be of less than 20 nm. Luminescences properties were found to be enhanced for the La and La+Ag co-doped ZnO nanoparticles.


MRS Advances ◽  
2020 ◽  
Vol 5 (45) ◽  
pp. 2349-2358 ◽  
Author(s):  
S. K. Noukelag ◽  
H.E.A. Mohamed ◽  
B. Moussa ◽  
L.C. Razanamahandry ◽  
S.K.O. Ntwampe ◽  
...  

AbstractBiosynthesized Zincite nanoparticles have been successfully demonstrated by a completely green process mediated aqueous extract of rosemary leaves acting as both reducing and stabilizing agents and zinc nitrate hexahydrate as the precursor. The synthesis was free of solvents and surfactants to adhere to green chemistry principles and the impartation of environmental benignity. To achieve our objective, structural and optical investigations of ZnO annealed at 500°C for 2hrs were carried-out using complementary techniques. High resolution transmission electron microscopy (HRTEM) revealed the self-assembled, highly agglomerated quasi-hexagonal shaped NPs and the average particle size was found to peak at 15.62 ± 0.22 nm. Selected area electron diffraction (SAED) and X-ray diffraction (XRD) exhibited several diffraction rings with clear diffraction spots confirming their polycrystallinity and the purity of ZnO NPs with a wurtzite structure. Furthermore, the energy dispersive X-ray spectroscopy (EDS) substantiated the presence of Zn and O in the sample and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) illustrated the Zn-O chemical bonds. From UV-Vis-NIR, the optical band gap was amounted to 3.2 eV and photoluminescence (PL) emission spectrum to 2.9eV with high surface defects and oxygen vacancies. Through these results, the use of rosemary leaves extract is hereby shown to be a cost-effective and environmentally friendly alternative to synthesize Zincite nanoparticles (ZnO NPs).


2015 ◽  
Vol 33 (1) ◽  
pp. 205-212 ◽  
Author(s):  
N. Srinivasan ◽  
J.C. Kannan

AbstractPure and aluminum doped zinc oxide nanoparticles were prepared by soft chemical method. The prepared nanoparticles were characterized by XRD, SEM-EDAX, UV-Vis, PL and FT-IR studies. XRD patterns revealed that the nanoparticles were crystallized in hexagonal wurtzite structure with an average particle size of 19 nm to 26 nm. The surface morphology was explored using SEM micrographs. The incorporation of aluminum was confirmed by EDAX and FT-IR studies. The band gaps of the particles were found from 3.48 eV to 3.53 eV through UV-Vis spectral studies. The defect related mechanism was investigated using PL measurements. The chemical functional groups in FT-IR spectra proved the formation of pure and aluminum doped zinc oxide nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document