scholarly journals Football and Team Handball Training Postpone Cellular Aging in Women

Author(s):  
Marie Hagman ◽  
Bjørn Fristrup ◽  
Rémi Michelin ◽  
Peter Krustrup ◽  
Muhammad Asghar

Abstract Aims: Several hallmarks of aging have been identified and examined separately in previous exercise studies. For the first time, this study investigates the effect of lifelong regular exercise in humans on two of the central aging hallmarks combined. Methods: This cross-sectional study involved 129 healthy, non-smoking women, including young elite football players (YF, n=29), young untrained controls (YC, n=30), elderly team handball players (EH, n=35) and elderly untrained controls (EC, n=35). From a resting blood sample, mononuclear cells (MNCs) were isolated and sorted into monocytes and lymphocytes. Telomere length, mitochondrial (mtDNA) copy number and mitochondrial function (PGC-1α and PGC-1β expression) were measured using quantitative polymerase chain reaction (qPCR). Results: Overall, young women showed significantly longer telomeres and higher mitochondrial function, but lower mtDNA copy number compared to elderly subjects. A multivariate analysis showed that YF had 22–24% longer telomeres in lymphocytes and MNCs compared to YC. In addition, YF showed 19–20% higher mtDNA copy number in lymphocytes and MNCs compared to YC. The two young groups did not differ in PGC-1α and PGC-1β expression. EH showed 14% lower mtDNA copy number in lymphocytes compared to EC, but 3.4-fold higher lymphocyte PGC-1α expression compared to EC. In MNCs, EH also showed 1.4-1.6- fold higher mitochondrial function. The two elderly groups did not differ in telomere length.Conclusion: Elite football training and lifelong team handball training are associated with anti-aging mechanisms in leukocytes in women, including maintenance of telomere length and upregulation of mitochondrial function.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie Hagman ◽  
Bjørn Fristrup ◽  
Rémi Michelin ◽  
Peter Krustrup ◽  
Muhammad Asghar

AbstractSeveral hallmarks of aging have been identified and examined separately in previous exercise studies. For the first time, this study investigates the effect of lifelong regular exercise in humans on two of the central aging hallmarks combined. This cross-sectional study involved 129 healthy, non-smoking women, including young elite football players (YF, n = 29), young untrained controls (YC, n = 30), elderly team handball players (EH, n = 35) and elderly untrained controls (EC, n = 35). From a resting blood sample, mononuclear cells (MNCs) were isolated and sorted into monocytes and lymphocytes. Telomere length, mitochondrial (mtDNA) copy number and key regulators of mitochondrial biogenesis and function (PGC-1α and PGC-1β expression) were measured using quantitative polymerase chain reaction (qPCR). Overall, young women showed significantly longer telomeres and higher PGC-1α and PGC-1β expression, but lower mtDNA copy number compared to elderly subjects. A multivariate analysis showed that YF had 22–24% longer telomeres in lymphocytes and MNCs compared to YC. In addition, YF showed 19–20% higher mtDNA copy number in lymphocytes and MNCs compared to YC. The two young groups did not differ in PGC-1α and PGC-1β expression. EH showed 14% lower mtDNA copy number in lymphocytes compared to EC, but 3.4-fold higher lymphocyte PGC-1α expression compared to EC. In MNCs, EH also showed 1.4–1.6-fold higher PGC-1α and PGC-1β expression. The two elderly groups did not differ in telomere length. Elite football training and lifelong team handball training are associated with anti-aging mechanisms in leukocytes in women, including maintenance of telomere length and superior mitochondrial characteristics.


2020 ◽  
Vol 16 (11) ◽  
pp. 20200364
Author(s):  
Antoine Stier ◽  
Bin-Yan Hsu ◽  
Coline Marciau ◽  
Blandine Doligez ◽  
Lars Gustafsson ◽  
...  

The underlying mechanisms of the lifelong consequences of prenatal environmental condition on health and ageing remain little understood. Thyroid hormones (THs) are important regulators of embryogenesis, transferred from the mother to the embryo. Since prenatal THs can accelerate early-life development, we hypothesized that this might occur at the expense of resource allocation in somatic maintenance processes, leading to premature ageing. Therefore, we investigated the consequences of prenatal TH supplementation on potential hallmarks of ageing in a free-living avian model in which we previously demonstrated that experimentally elevated prenatal TH exposure accelerates early-life growth. Using cross-sectional sampling, we first report that mitochondrial DNA (mtDNA) copy number and telomere length significantly decrease from early-life to late adulthood, thus suggesting that these two molecular markers could be hallmarks of ageing in our wild bird model. Elevated prenatal THs had no effect on mtDNA copy number but counterintuitively increased telomere length both soon after birth and at the end of the growth period (equivalent to offsetting ca 4 years of post-growth telomere shortening). These findings suggest that prenatal THs might have a role in setting the ‘biological' age at birth, but raise questions about the nature of the evolutionary costs of prenatal exposure to high TH levels.


2011 ◽  
Vol 14 (2) ◽  
pp. 115-123 ◽  
Author(s):  
Janice Humphreys ◽  
Elissa S. Epel ◽  
Bruce A. Cooper ◽  
Jue Lin ◽  
Elizabeth H. Blackburn ◽  
...  

Recent studies suggest that chronic psychological stress may accelerate aging at the cellular level. Telomeres are protective components that stabilize the ends of chromosomes and modulate cellular aging. Women exposed to intimate partner violence (IPV) experience chronic stress and report worse health. The purpose of this exploratory study was to examine telomeric DNA length in women who have experienced chronic stress related to IPV. We hypothesized that IPV exposure would be associated with shorter telomere length. The investigation used a cross-sectional design to study telomere length in women with a history of IPV exposure and control women who reported no prior exposure to IPV. Advertisements and public notices were used to recruit a convenience sample of healthy women. Mean leukocyte telomere length was measured in DNA samples from peripheral blood mononuclear cells (PBMCs) by a quantitative polymerase chain reaction assay (qPCR). Telomere length was significantly shorter in the 61 formerly abused women compared to the 41 controls ( t = 2.4, p = .02). Length of time in the abusive relationship and having children were associated with telomere length after controlling for age and body mass index (BMI) ( F(2, 99) = 10.23, p < .001). Numerous studies suggest that women who experience IPV have poorer overall health. It is often presumed that the stress of IPV may be causing greater morbidity. Findings from this descriptive study suggest a link between IPV exposure, duration of IPV-related stress, and telomere length molecular mechanisms that regulate cellular aging.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1415
Author(s):  
Larry A. Tucker

The relationship between fruit and vegetable intake and telomere length was examined using a cross-sectional design and an NHANES random sample of 5448 U.S. adults. Fruit and vegetable (F&V) consumption was assessed using a 24 h recall, and telomere length, an index of cellular aging, was measured using the quantitative polymerase chain reaction method. Telomere length was linearly related to F&V intake when combined (F = 22.7, p < 0.0001) and also when separated as fruit (F = 7.2, p < 0.0121) or vegetables (F = 15.4, p < 0.0005), after adjusting for covariates. Specifically, telomeres were 27.8 base pairs longer for each 100 g (3.5 ounces) of F&V consumed. Because each additional year of chronological age was associated with telomeres that were 14.9 base pairs shorter, when women and men were analyzed together, results indicated that a 100 g (3.5 oz) per day increment in F&V corresponded with 1.9 years less biological aging. When the 75th percentile of F&V intake was compared to the 25th, the difference was 4.4 years of cellular aging. When separated by sex, fruits and vegetables were both related to telomere length in women, but only vegetable intake was predictive of telomere length in men. In conclusion, evidence based on a random sample of U.S. adults indicates that the more the servings of F&V, the longer telomeres tend to be.


2021 ◽  
Author(s):  
Muhammad Asghar ◽  
Amani Odeh ◽  
Ahmad Jouni Fattahi ◽  
Alexandra Edward Henriksson ◽  
Aurelie Miglar ◽  
...  

Abstract Background Progressive age is the single major risk factor for neurodegenerative diseases. Cellular aging markers during the course of Parkinson’s disease (PD) have been implicated in previous studies, however majority of these studies have investigated the association of individual cellular aging hallmarks with PD but not jointly. Method Here, we have studied the association of PD with three aging hallmarks (telomere attrition, mitochondrial dysfunction, and cellular senescence) in blood and the brain tissue. Telomere length and mitochondrial DNA ( mtDNA ) copy number was assessed by qPCR, while mitochondrial function ( PGC-1α and PGC-1β ) and expression of cyclin-dependent kinase inhibitor 2A ( CDKN2A ), cellular senescence marker was measured by RT-qPCR. Results Our results show that patients diagnosed with PD had 20% lower mitochondrial DNA copy number but 26% longer telomeres in blood compared to controls. Moreover, telomere length in blood was positively correlated with medication (Levodopa Equivalent Daily Dose). Similar results were found in brain tissue, where patients with Parkinson’s disease (PD), Parkinson dementia (PDD) and Dementia with Lewy Bodies (DLB) showed (46-95%) depleted mtDNA copy number, but (7-9%) longer telomeres compared to controls. Furthermore, when compared to controls, patients had lower mitochondrial biogenesis ( PGC-1α and PGC-1β ) and higher load of cellular senescent cells in postmortem prefrontal cortex tissue, where DLB showing the highest effect among the patient groups. Conclusion Our results show that mitochondrial dysfunction and cellular senescence but not telomere shortening is associated with PD, PDD and DLB. Our findings suggest that mitochondrial copy number and function could be used as viable biomarker in blood as an early indicator for the risk of neurodegenerative diseases.


Author(s):  
Antoine Stier ◽  
Bin-Yan Hsu ◽  
Coline Marciau ◽  
Blandine Doligez ◽  
Lars Gustafsson ◽  
...  

AbstractPrenatal environmental conditions can have lifelong consequences on health and aging. The underlying mechanisms remain nonetheless little understood. Thyroid hormones (THs) are important regulators of embryogenesis transferred from the mother to the embryo. In an avian model, we manipulated embryo exposure to maternal THs through egg injection and investigated the consequences on postnatal growth and aging. We first report that mitochondrial DNA (mtDNA) copy number and telomere length significantly decrease from early-life to late adulthood, thus confirming that these two molecular markers are hallmarks of aging in our wild bird model. The experimental elevation of prenatal THs levels had a transient positive effect on postnatal growth. Elevated prenatal THs had no effect on mtDNA copy number but significantly increased telomere length both soon after birth and at the end of the growth period (equivalent to offsetting ca. 4 years of post-growth telomere shortening). These findings suggest that prenatal THs have a key role in setting the ‘biological’ age at birth, and thus might influence longevity.


Author(s):  
Sophia Bam ◽  
Erin Buchanan ◽  
Caitlyn Mahony ◽  
Colleen O’Ryan

Autism spectrum disorder (ASD) is a complex disorder that is underpinned by numerous dysregulated biological pathways, including pathways that affect mitochondrial function. Epigenetic mechanisms contribute to this dysregulation and DNA methylation is an important factor in the etiology of ASD. We measured DNA methylation of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α), as well as five genes involved in regulating mitochondrial homeostasis to examine mitochondrial dysfunction in an ASD cohort of South African children. Using targeted Next Generation bisulfite sequencing, we found differential methylation (p &lt; 0.05) at six key genes converging on mitochondrial biogenesis, fission and fusion in ASD, namely PGC-1α, STOML2, MFN2, FIS1, OPA1, and GABPA. PGC-1α, the transcriptional regulator of biogenesis, was significantly hypermethylated at eight CpG sites in the gene promoter, one of which contained a putative binding site for CAMP response binding element 1 (CREB1) (p = 1 × 10–6). Mitochondrial DNA (mtDNA) copy number, a marker of mitochondrial function, was elevated (p = 0.002) in ASD compared to controls and correlated significantly with DNA methylation at the PGC-1α promoter and there was a positive correlation between methylation at PGC-1α CpG#1 and mtDNA copy number (Spearman’s r = 0.2, n = 49, p = 0.04) in ASD. Furthermore, DNA methylation at PGC-1α CpG#1 and mtDNA copy number correlated significantly (p &lt; 0.05) with levels of urinary organic acids associated with mitochondrial dysfunction, oxidative stress, and neuroendocrinology. Our data show differential methylation in ASD at six key genes converging on PGC-1α-dependent regulation of mitochondrial biogenesis and function. We demonstrate that methylation at the PGC-1α promoter is associated with elevated mtDNA copy number and metabolomic evidence of mitochondrial dysfunction in ASD. This highlights an unexplored role for DNA methylation in regulating specific pathways involved in mitochondrial biogenesis, fission and fusion contributing to mitochondrial dysfunction in ASD.


2019 ◽  
Vol 20 (23) ◽  
pp. 6086 ◽  
Author(s):  
Meng Xu ◽  
Qing Ma ◽  
Chunlan Fan ◽  
Xue Chen ◽  
Huiming Zhang ◽  
...  

This study aimed to evaluate whether ginsenosides Rb1 (20-S-protopanaxadiol aglycon) and Rg1 (20-S-protopanaxatriol aglycon) have mitochondrial protective effects against oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in primary mouse astrocytes and to explore the mechanisms involved. The OGD/R model was used to mimic the pathological process of cerebral ischemia-reperfusion in vitro. Astrocytes were treated with normal conditions, OGD/R, OGD/R plus Rb1, or OGD/R plus Rg1. Cell viability was measured to evaluate the cytotoxicity of Rb1 and Rg1. Intracellular reactive oxygen species (ROS) and catalase (CAT) were detected to evaluate oxidative stress. The mitochondrial DNA (mtDNA) copy number and mitochondrial membrane potential (MMP) were measured to evaluate mitochondrial function. The activities of the mitochondrial respiratory chain (MRC) complexes I–V and the level of cellular adenosine triphosphate (ATP) were measured to evaluate oxidative phosphorylation (OXPHOS) levels. Cell viability was significantly decreased in the OGD/R group compared to the control group. Rb1 or Rg1 administration significantly increased cell viability. Moreover, OGD/R caused a significant increase in ROS formation and, subsequently, it decreased the activity of CAT and the mtDNA copy number. At the same time, treatment with OGD/R depolarized the MMP in the astrocytes. Rb1 or Rg1 administration reduced ROS production, increased CAT activity, elevated the mtDNA content, and attenuated the MMP depolarization. In addition, Rb1 or Rg1 administration increased the activities of complexes I, II, III, and V and elevated the level of ATP, compared to those in the OGD/R groups. Rb1 and Rg1 have different chemical structures, but exert similar protective effects against astrocyte damage induced by OGD/R. The mechanism may be related to improved efficiency of mitochondrial oxidative phosphorylation and the reduction in ROS production in cultured astrocytes.


2019 ◽  
Vol 22 (1) ◽  
pp. 139-151 ◽  
Author(s):  
Han Shen ◽  
Man Yu ◽  
Maria Tsoli ◽  
Cecilia Chang ◽  
Swapna Joshi ◽  
...  

Abstract Background Despite increased understanding of the genetic events underlying pediatric high-grade gliomas (pHGGs), therapeutic progress is static, with poor understanding of nongenomic drivers. We therefore investigated the role of alterations in mitochondrial function and developed an effective combination therapy against pHGGs. Methods Mitochondrial DNA (mtDNA) copy number was measured in a cohort of 60 pHGGs. The implication of mtDNA alteration in pHGG tumorigenesis was studied and followed by an efficacy investigation using patient-derived cultures and orthotopic xenografts. Results Average mtDNA content was significantly lower in tumors versus normal brains. Decreasing mtDNA copy number in normal human astrocytes led to a markedly increased tumorigenicity in vivo. Depletion of mtDNA in pHGG cells promoted cell migration and invasion and therapeutic resistance. Shifting glucose metabolism from glycolysis to mitochondrial oxidation with the adenosine monophosphate–activated protein kinase activator AICAR (5-aminoimidazole-4-carboxamide ribonucleotide) or the pyruvate dehydrogenase kinase inhibitor dichloroacetate (DCA) significantly inhibited pHGG viability. Using DCA to shift glucose metabolism to mitochondrial oxidation and then metformin to simultaneously target mitochondrial function disrupted energy homeostasis of tumor cells, increasing DNA damage and apoptosis. The triple combination with radiation therapy, DCA and metformin led to a more potent therapeutic effect in vitro and in vivo. Conclusions Our results suggest metabolic alterations as an onco-requisite factor of pHGG tumorigenesis. Targeting reduced mtDNA quantity represents a promising therapeutic strategy for pHGG.


Sign in / Sign up

Export Citation Format

Share Document