scholarly journals Fusion of the SRDX Motif to OsPIL11 or OsPIL16 Causes Rice Constitutively Photomorphogenic Phenotypes In Darkness

Author(s):  
Yaping Li ◽  
Fang Zhang ◽  
Chongke Zheng ◽  
Jinjun Zhou ◽  
Xiangxue Meng ◽  
...  

Abstract Dark-grown seedlings develop skotomorphogenically. Because of the development of rice direct seeding cultivation systems, there is an increasing need for clarifying the molecular mechanism underlying rice skotomorphogenic development. It has been reported that SRDX motif, LDLDLELRLGFA, was able to convert a transcriptional activator into a strong repressor. In the present study, to explore the functions of PILs in rice skotomorphogenesis, we generated OsPIL11-SRDX and OsPIL16-SRDX transgenic lines by fusing the SRDX transcriptional repressor motif to the C-terminal of two members of the phytochrome interacting factor-like (OsPIL) family in rice (OsPIL11 and OsPIL16). The OsPIL11-SRDX and OsPIL16-SRDX seedlings grown in darkness had constitutively photomorphogenic phenotypes with short coleoptiles and open leaf blades. The results of an RNA sequencing analysis revealed that the dark-grown OsPIL11-SRDX and OsPIL16-SRDX lines had gene expression patterns similar to those of wild-type seedlings grown under red light. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses indicated that the expression levels of genes related to photosynthesis, photosynthesis–antenna proteins, and porphyrin and chlorophyll metabolism were up-regulated in the dark-grown OsPIL11-SRDX and OsPIL16-SRDX lines, whereas the expression of genes related to the auxin pathway was down-regulated. In contrast, the expression levels of these photosynthesis-related genes were down-regulated in dark-grown transgenic seedlings overexpressing OsPIL11 or OsPIL16, which had exaggerated skotomorphogenesis. Considered together, our data indicate that OsPIL11 and OsPIL16 primarily function as transcriptional activators, at least in regards to promoting skotomorphogenesis and repressing the expression of photosynthesis-related genes.

mBio ◽  
2012 ◽  
Vol 3 (4) ◽  
Author(s):  
Matthew J. Reichlen ◽  
Venkata R. Vepachedu ◽  
Katsuhiko S. Murakami ◽  
James G. Ferry

ABSTRACT Results are presented supporting a regulatory role for the product of the MA3302 gene locus (designated MreA) previously annotated as a hypothetical protein in the methanogenic species Methanosarcina acetivorans of the domain Archaea. Sequence analysis of MreA revealed identity to the TrmB family of transcription factors, albeit the sequence is lacking the sensor domain analogous to TrmBL2, abundant in nonmethanogenic species of the domain Archaea. Transcription of mreA was highly upregulated during growth on acetate versus methylotrophic substrates, and an mreA deletion (ΔmreA) strain was impaired for growth with acetate in contrast to normal growth with methylotrophic substrates. Transcriptional profiling of acetate-grown cells identified 280 genes with altered expression in the ΔmreA strain versus the wild-type strain. Expression of genes unique to the acetate pathway decreased whereas expression of genes unique to methylotrophic metabolism increased in the ΔmreA strain relative to the wild type, results indicative of a dual role for MreA in either the direct or indirect activation of acetate-specific genes and repression of methylotrophic-specific genes. Gel shift experiments revealed specific binding of MreA to promoter regions of regulated genes. Homologs of MreA were identified in M. acetivorans and other Methanosarcina species for which expression patterns indicate roles in regulating methylotrophic pathways. IMPORTANCE Species in the domain Archaea utilize basal transcription machinery resembling that of the domain Eukarya, raising questions addressing the role of numerous putative transcription factors identified in sequenced archaeal genomes. Species in the genus Methanosarcina are ideally suited for investigating principles of archaeal transcription through analysis of the capacity to utilize a diversity of substrates for growth and methanogenesis. Methanosarcina species switch pathways in response to the most energetically favorable substrate, metabolizing methylotrophic substrates in preference to acetate marked by substantial regulation of gene expression. Although conversion of the methyl group of acetate accounts for most of the methane produced in Earth’s biosphere, no proteins involved in the regulation of genes in the acetate pathway have been reported. The results presented here establish that MreA participates in the global regulation of diverse methanogenic pathways in the genus Methanosarcina. Finally, the results contribute to a broader understanding of transcriptional regulation in the domain Archaea.


Reproduction ◽  
2019 ◽  
Vol 158 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Xuan Phuoc Nguyen ◽  
Tomoko Nakamura ◽  
Satoko Osuka ◽  
Bayasula Bayasula ◽  
Natsuki Nakanishi ◽  
...  

Folliculogenesis is a complex process, defined by the growth and development of follicles from the primordial population. Granulosa cells (GCs) play a vital role in every stage of follicular growth through proliferation, acquisition of gonadotropic responsiveness, steroidogenesis and production of autocrine/paracrine factors. A recently discovered hypothalamic neuropeptide phoenixin is involved in the regulation of the reproductive system. Phoenixin acts through its receptor, G protein-coupled receptor 173 (GPR173), to activate the cAMP/PKA pathway leading to the phosphorylation of CREB (pCREB). Here, we demonstrated the expression patterns of phoenixin and GPR173 in human ovary and explored its role in folliculogenesis. Phoenixin and GPR173 were both expressed in the human ovarian follicle, with increased expression in GCs as the follicle grows. Phoenixin treatment at 100 nM for 24 h induced the proliferation of human non-luteinized granulosa cell line, HGrC1 and significantly increased the expression levels of CYP19A1, FSHR, LHR and KITL, but decreased NPPC expression levels. These effects were suppressed by GPR173 siRNA. The expression level of CREB1, pCREB and estradiol (E2) production in the culture medium was significantly enhanced by phoenixin treatment in a concentration-dependent manner. Phoenixin also significantly increased the follicular area in a murine ovarian tissue culture model, leading to an increased number of ovulated oocytes with a higher level of maturation. Taken together, our data demonstrate that phoenixin is an intraovarian factor that promotes follicular growth through its receptor GPR173 by accelerating proliferation of GCs, inducing E2 production and increasing the expression of genes related to follicle development.


2020 ◽  
Vol 100 (3) ◽  
pp. 296-303
Author(s):  
Tie Dong Liu ◽  
Xi Wen Zhang ◽  
Yong Xu

Red light significantly affects the expression of plant photoreceptor genes and influences stomatal development through crosstalk of the constitutive photomorphogenic 1–cryptochrome–phytochrome signaling pathway. When blue light was replaced with red light, the expression levels of ZmCry1, ZmPhyB1, ZmEPF2, and ZmEPFL9 were enhanced, whereas that of ZmCOP1 was restricted. Moreover, the expression levels of ZmSPCH and ZmMUTE were also enhanced, but they were generally lower than those under white light. Consequently, stomatal formation, which was determined by net photosynthesis, stomatal conductance, intercellular CO2 concentration, and transpiration rate, was inhibited through decreased stomatal index and stomatal density. We conclude that red light positively regulates EPFL9 in the intercellular signaling but reduces the positive regulation of blue light on COP1 and epidermal patterning factor 2 in the intracellular and intercellular signaling; therefore, though red light promotes the gene’s function on stomatal development of seedling maize, blue light maybe dominant to red light in seedling stage.


2021 ◽  
Vol 22 (18) ◽  
pp. 10054
Author(s):  
Ivan B. Filippenkov ◽  
Vasily V. Stavchansky ◽  
Natalya Yu. Glazova ◽  
Elena A. Sebentsova ◽  
Julia A. Remizova ◽  
...  

Natural melanocortins (MCs) have been used in the successful development of drugs with neuroprotective properties. Here, we studied the behavioral effects and molecular genetic mechanisms of two synthetic MC derivatives-ACTH(4–7)PGP (Semax) and ACTH(6–9)PGP under normal and acute restraint stress (ARS) conditions. Administration of Semax or ACTH(6–9)PGP (100 μg/kg) to rats 30 min before ARS attenuated ARS-induced behavioral alterations. Using high-throughput RNA sequencing (RNA-Seq), we identified 1359 differentially expressed genes (DEGs) in the hippocampus of vehicle-treated rats subjected to ARS, using a cutoff of >1.5 fold change and adjusted p-value (Padj) < 0.05, in samples collected 4.5 h after the ARS. Semax administration produced >1500 DEGs, whereas ACTH(6–9)PGP administration led to <400 DEGs at 4.5 h after ARS. Nevertheless, ~250 overlapping DEGs were identified, and expression of these DEGs was changed unidirectionally by both peptides under ARS conditions. Modulation of the expression of genes associated with biogenesis, translation of RNA, DNA replication, and immune and nervous system function was produced by both peptides. Furthermore, both peptides upregulated the expression levels of many genes that displayed decreased expression after ARS, and vice versa, the MC peptides downregulated the expression levels of genes that were upregulated by ARS. Consequently, the antistress action of MC peptides may be associated with a correction of gene expression patterns that are disrupted during ARS.


2022 ◽  
Vol 12 ◽  
Author(s):  
Frédéric Bouché ◽  
Daniel P. Woods ◽  
Julie Linden ◽  
Weiya Li ◽  
Kevin S. Mayer ◽  
...  

The proper timing of flowering, which is key to maximize reproductive success and yield, relies in many plant species on the coordination between environmental cues and endogenous developmental programs. The perception of changes in day length is one of the most reliable cues of seasonal change, and this involves the interplay between the sensing of light signals and the circadian clock. Here, we describe a Brachypodium distachyon mutant allele of the evening complex protein EARLY FLOWERING 3 (ELF3). We show that the elf3 mutant flowers more rapidly than wild type plants in short days as well as under longer photoperiods but, in very long (20 h) days, flowering is equally rapid in elf3 and wild type. Furthermore, flowering in the elf3 mutant is still sensitive to vernalization, but not to ambient temperature changes. Molecular analyses revealed that the expression of a short-day marker gene is suppressed in elf3 grown in short days, and the expression patterns of clock genes and flowering time regulators are altered. We also explored the mechanisms of photoperiodic perception in temperate grasses by exposing B. distachyon plants grown under a 12 h photoperiod to a daily night break consisting of a mixture of red and far-red light. We showed that 2 h breaks are sufficient to accelerate flowering in B. distachyon under non-inductive photoperiods and that this acceleration of flowering is mediated by red light. Finally, we discuss advances and perspectives for research on the perception of photoperiod in temperate grasses.


2018 ◽  
Vol 10 (7) ◽  
pp. 122
Author(s):  
Debora Almeida Alcântara da Silva ◽  
Juliane Laner de Toledo ◽  
Flaviani Gabriela Pierdoná ◽  
Gabriel Sergio Costa Alves ◽  
Michelle de Souza Fayad André ◽  
...  

Allelopathy involves the release of compounds into the environment that affects the growth and development of other organisms. This phenomenon may lead to the production of compounds less harmful to the environment than traditional herbicides used in weed control. In plants, terpenes have been identified as components of allelochemicals and are synthesized by enzymes named as geranylgeranyl diphosphate synthases (GGPPS). There are about 12 GGPPS genes in Arabidopsis, among which is GGR. This work aims to study the association between the expression levels of GGR and the allelopathic response of sesame seedlings to Arabidopsis leaf extracts. Hence, the GGR gene was inserted into Arabidopsis with the purpose to investigate the allelopathic effects of GGR expression levels on sesame seedlings. GGR expression levels were quantified by RT-PCR in both transgenic and non-transgenic [wild-type (WT)] lines. It has been observed that both wild-type and GGR expressing transgenic lines inhibited the growth of sesame seedlings. However, it is noteworthy that the phytotoxicity of extracts from GGR lines were greater than WT extracts. RT-PCR analysis of GGR expression revealed that WT plants had higher levels of GGR expression than GGR transgenic lines, which suggests that a homologous-dependent gene silencing (HDGS) occurred in GGR lines. GGR is part of an enzyme complex that works as a hub that determines the types of terpenes produced in Arabidopsis chloroplasts. The present data indicates that decreases in GGR expression may have favoured the production of terpenes with stronger allelopathic capacity in Arabidopsis leaves.


Insects ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 374
Author(s):  
Jiangshan Cong ◽  
Cuicui Tao ◽  
Xuan Zhang ◽  
Hui Zhang ◽  
Tingcai Cheng ◽  
...  

Bombyx mori silk protein genes are strictly turned on and off in different developmental stages under the hormone periodically change. The broad complex (BrC) is a transcription factor mediating 20-hydroxyecdysone action, which plays important roles during metamorphosis. Here, we observed that two isoforms of BmBrC (BmBrC-Z2 and BmBrC-Z4) exhibited contrasting expression patterns with fibroin genes (FibH, FibL and P25) in the posterior silk gland (PSG), suggesting that BmBrC may negatively regulate fibroin genes. Transgenic lines were constructed to ectopically overexpress BmBrC-Z2 in the PSG. The silk protein genes in the transgenic line were decreased to almost half of that in the wild type. The silk yield was decreased significantly. In addition, the expression levels of regulatory factors (BmKr-h1 and BmDimm) response to juvenile hormone (JH) signal were inhibited significantly. Then exogenous JH in the BmBrC-Z2 overexpressed lines can inhibit the expression of BmBrC-Z2 and activate the expression of silk protein genes and restore the silk yield to the level of the wild type. These results indicated that BmBrC may inhibit fibroin genes by repressing the JH signal pathway, which would assist in deciphering the comprehensive regulation mechanism of silk protein genes.


2017 ◽  
Vol 22 (6) ◽  
pp. 743-750 ◽  
Author(s):  
Chen-long Chu ◽  
Chen-hui Zhao ◽  
Zhi-wei Zhang ◽  
Ming-wei Wang ◽  
Zhao-hui Zhang ◽  
...  

Our aim was to investigate differences in gene expression in bladder tissues between cystitis glandularis (CG) patients and healthy controls. Subsequent RNA was isolated from urinary bladder samples from CG patients and healthy controls, followed by RNA sequencing analysis. There were 4263 differentially expressed genes in urinary bladder between CG patients and controls, and 8 genes were verified with real-time PCR, Western blot, and enzyme-linked immunosorbent assay (ELISA) analysis. Gene set enrichment analysis (GSEA) revealed that 25 signaling pathways were upregulated in CG patients, and 17 signaling pathways were found upregulated in healthy controls. The mRNA expression levels of the indicated genes, including CCND1, CCNA1, EGFR, AR, CX3CL1, CXCL6, and CXCL1, were significantly increased in urinary bladder from CG and bladder cancer (BC) patients compared with healthy controls, while TP53 was decreased. CX3CL1, CXCL6, and CXCL1 concentrations in peripheral blood from CG and BC patients were significantly increased compared with healthy controls. The protein expression levels of CCND1, EGFR, and AR were significantly increased in urinary bladder from CG and BC patients compared with healthy controls. In conclusion, the gene expression profile of CG patients has established a foundation to study the gene mechanism of CG and BC progression.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Haijing Wang ◽  
Daoxin Liu ◽  
Pengfei Song ◽  
Feng Jiang ◽  
Xiangwen Chi ◽  
...  

Abstract Background The spleen is the largest secondary lymphoid organ and the main site where stress erythropoiesis occurs. It is known that hypoxia triggers the expansion of erythroid progenitors; however, its effects on splenic gene expression are still unclear. Here, we examined splenic global gene expression patterns by time-series RNA-seq after exposing mice to hypoxia for 0, 1, 3, 5, 7 and 13 days. Results Morphological analysis showed that on the 3rd day there was a significant increase in the spleen index and in the proliferation of erythroid progenitors. RNA-sequencing analysis revealed that the overall expression of genes decreased with increased hypoxic exposure. Compared with the control group, 1380, 3430, 4396, 3026, and 1636 genes were differentially expressed on days 1, 3, 5, 7 and 13, respectively. Clustering analysis of the intersection of differentially expressed genes pointed to 739 genes, 628 of which were upregulated, and GO analysis revealed a significant enrichment for cell proliferation. Enriched GO terms of downregulated genes were associated with immune cell activation. Expression of Gata1, Tal1 and Klf1 was significantly altered during stress erythropoiesis. Furthermore, expression of genes involved in the immune response was inhibited, and NK cells decreased. Conclusions The spleen of mice conquer hypoxia exposure in two ways. Stress erythropoiesis regulated by three transcription factors and genes in immune response were downregulated. These findings expand our knowledge of splenic transcriptional changes during hypoxia.


Author(s):  
Casin Le ◽  
Camila Pimentel ◽  
Marisel Romina Tuttobene ◽  
Tomás Subils ◽  
Jenny Escalante ◽  
...  

Most Acinetobacter baumannii strains are naturally competent. Although some information is available about factors that enhance or reduce the frequency of transformation of this bacterium, the regulatory elements and mechanisms are barely understood. In this article, we describe studies on the role of H-NS in the regulation of expression of genes related to natural competency and the ability to uptake foreign DNA. The expression levels of the natural transformation-related genes pilA, pilT, pilQ, comEA, comEC, comF, and drpA were significantly increased in a &Delta;hns derivative of Acinetobacter baumannii A118. Complementation of the mutant with a recombinant plasmid harboring hns restored expression levels of six of these genes (pilT remained expressed at high levels) to those of the wild-type strain. The transformation frequency of the A. baumannii A118 &Delta;hns strain was significantly higher than that of the wild-type. Similar, albeit not identical, effects occurred when hns was deleted from the hypervirulent A. baumannii AB5075 strain. Reduction of gene expression in a few cases was not as pronounced as to reach wild-type levels, and expression of comEA was enhanced further. In conclusion, the expression of all seven transformation-related genes was enhanced after deleting hns in A. baumannii A118 and AB5075, and these modifications are accompanied by an increase in the cells&rsquo; transformability. The results demonstrate a role of H-NS in A. baumannii&rsquo;s natural competence.


Sign in / Sign up

Export Citation Format

Share Document