scholarly journals Hyaluronic acid optimizes therapeutic effects of Hydrogen peroxide-induced oxidative stress on breast cancer

2020 ◽  
Author(s):  
Ardeshir Abbasi ◽  
Nafiseh Pakravan ◽  
Zuhair Hassan

Abstract Background and Purpose: Distinguishing the multiple effects of reactive oxygen species (ROS) on cancer cells is important to understand their role in tumour biology. Conversely, elevated levels of ROS-induced oxidative stress can induce cancer cell death. However, some anti-oxidative or ROS-mediated oxidative therapies have also yielded beneficial effects.Experimental approach: To better define the effects of oxidative stress, in vitro experiments were conducted on 4T1 and splenic mononuclear cells (MNCs) under hypoxic and normoxic conditions. Furthermore, H2O2 [10-1000μM], was used as a ROS source alone or in combination with hyaluronic acid (HA), which is frequently used as drug delivery vehicle.Key Results: Our results indicate that treatment of cancer cells with H2O2+HA was significantly more effective than H2O2 alone. In addition, treatment with H2O2+HA led to increased apoptosis, decreased proliferation, and multi-phase cell cycle arrest in 4T1 cells in a dose-dependent manner under normoxic or hypoxic conditions. Also, migratory tendency and the mRNA levels of VEGF, and MMP-2,9 were significantly decreased. Of note, HA treatment combined with 100-1000μM H2O2+ caused more damage to MNCs as compared to treatment with lower concentrations [10-50μM]. Based on these results we propose to administer high dose H2O2+HA [100-1000μM] for intra-tumoral injection and low doses for systemic administration.Conclusions & Implications: Intra-tumoral route could have toxic and inhibitory effects not only on the tumour but also on residential myeloid cells defending it, whereas systemic treatment could stimulate peripheral immune responses against the tumour. More in vivo research is required to confirm this hypothesis.

Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 787
Author(s):  
Enrique García-Pérez ◽  
Dojin Ryu ◽  
Hwa-Young Kim ◽  
Hae Dun Kim ◽  
Hyun Jung Lee

Ochratoxin A (OTA) is a mycotoxin that is potentially carcinogenic to humans. Although its mechanism remains unclear, oxidative stress has been recognized as a plausible cause for the potent renal carcinogenicity observed in experimental animals. The effect of OTA on oxidative stress parameters in two cell lines of LLC-PK1 and HK-2 derived from the kidneys of pig and human, respectively, were investigated and compared. We found that the cytotoxicity of OTA on LLC-PK1 and HK-2 cells was dose- and time-dependent in both cell lines. Furthermore, increased intracellular reactive oxygen species (ROS) induced by OTA in both cell lines were observed in a time-dependent manner. Glutathione (GSH) was depleted by OTA at >48 h in HK-2 but not in LLC-PK1 cells. While the mRNA levels of glucose-6-phosphate dehydrogenase (G6PD) and glutathione peroxidase 1 (GPX1) in LLC-PK1 were down-regulated by 0.67- and 0.66-fold, respectively, those of catalase (CAT), glutathione reductase (GSR), and superoxide dismutase 1 (SOD) in HK-2 were up-regulated by 2.20-, 2.24-, and 2.75-fold, respectively, after 72 h exposure to OTA. Based on these results, we conclude that HK-2 cells are more sensitive to OTA-mediated toxicity than LLC-PK1, and OTA can cause a significant oxidative stress in HK-2 as indicated by changes in the parameter evaluated.


2020 ◽  
Author(s):  
Zhenzhen Zhang ◽  
Chuandi Zhou ◽  
Deji Draga ◽  
lhamo Thashi ◽  
Zhi Zheng ◽  
...  

Abstract Background: LingqiHuangban Granule(LQHBG) is a famous traditional Chinese medicine formula used to manage retinal diseases, as an effective holistic treatment through warming Yang to exert tonifying effects on kidney and invigorating spleen to remove dampness to nourish essence of effect. The study examined protection of LQHBG on oxidative stress-induced injury in human retinal endothelial cells(HRECs) in vitro, determined the potential molecular targets of LQHBG using network pharmacology.Methods: The potential targets of active ingredients in LQHBG were predicted using pharmmapper. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analyses were carried out using Molecule Annotation System. The protein-protein interaction networks were constructed using Cytoscape. LQHBG was administered to rabbits to prepare medicated serum. The apoptosis of HRECs was evaluated by TUNEL and Flow Cytometry(FCM). MDA, SOD, LDH, GSH-Px, and T-AOC were detected. The mRNA expressions of Nrf2, NF-κB and HO-1 were detected, protein expression levels of Nrf2, Bcl-2, NF-κB, HO-1 and caspase-3 were analyzed.Results: TUNEL demonstrated the numbers of apoptotic cells in low-and high-dose LQHBG groups was obviously less than model group(P<0.05). FCM analysis revealed apoptotic rates of HRECs in low-and high-dose LQHBG groups were obviously reduced in a dose-dependent manner(P<0.05). The potential mechanism of LQHBG was the NF-κB pathway identified using PharmMapper. LQHBG significantly decreased MDA, LDH levels and enhanced SOD, GSH-Px and T-AOC generation. LQHBG inhibited upregulation of NF-κB, caspase-3 and enhanced Bcl-2, Nrf2, and HO-1 expression.Conclusion: LQHBG protected HRECs against oxidative-stress via suppression of apoptosis and elevation of antioxidant ability, which may involve activation of Nrf2/ARE/HO-1 pathway and inhibition of NF-κB pathway.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Karin Chen ◽  
Leo Satlof ◽  
Udithi Kothapalli ◽  
Noah Ziluck ◽  
Maribel Lema ◽  
...  

Abstract Hypoxia is a common phenomenon in solid tumor development caused by a decrease in either oxygen concentration or oxygen pressure as a result of rapid tumor cell growth. Hypoxia is characterized by stabilization of the alpha subunit of the hypoxia-inducible factor (HIF-1α) and its nuclear translocation and heterodimerization with HIF-1β. Activation of this signaling pathway involves multiple downstream effectors including carbonic anhydrase 9 (CA9, s. CAIX). A reliable method to mimic hypoxia utilizes cobalt(II) chloride (CoCl2), which directly induces the expression of HIF-1α. The aim of this study was to optimize the experimental conditions for CoCl2 treatment of breast cancer cells in vitro using three human breast cancer cell lines (MDA-MB-231, T-47D, and MCF-7 cells). We performed time- and concentration-response experiments, using various concentrations of CoCl2 (50, 100, 200, and 300 μM) for 24 and 48 hours, and measured the expression of HIF-1α and CA9 by qRT-PCR and Western blot analyses. Results demonstrated that CoCl2 downregulated HIF-1α mRNA levels but upregulated CA9 mRNA levels in a concentration- and time-dependent manner. Concomitantly, CoCl2 treatment resulted in a significant induction of HIF-1α protein levels. We further investigated the effect of the CoCl2 concentrations listed above on cell apoptosis using an in situ apoptosis detection kit. The results demonstrated that concentrations of CoCl2 up to 100 μM had no significant effect on cell apoptosis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Abdelkader Hassani ◽  
Mohammad Mahdi Sabaghpour Azarian ◽  
Wisam Nabeel Ibrahim ◽  
Siti Aslina Hussain

Abstract Gallic acid (GA) is a natural phenolic compound with therapeutic effects that are often challenged by its rapid metabolism and clearance. Therefore,  GA was encapsulated using gum arabic into nanoparticles to increase its bioavailability. The formulated nanoparticles (GANPs) were characterized for physicochemical properties and size and were then evaluated for antioxidant and antihypertensive effects using various established in vitro assays, including 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide scavenging (NO), β-carotene bleaching and angiotensin-converting enzyme (ACE) inhibitory assays. The GANPs were further evaluated for the in vitro cytotoxicity, cell uptake and cell migration in four types of human cancer cell lines including (MCF-7, MDA-MB231) breast adenocarcinoma, HepG2 hepatocellular cancer, HT-29 colorectal adenocarcinoma, and MCF-10A breast epithelial cell lines. The GANPs demonstrated potent antioxidant effects and have shown promising anti-cancer properties in a dose-dependent manner with a predilection toward HepG2 and MCF7 cancer cells. The uptake of GANPs was successful in the majority of cancer cells with a propensity to accumulate in the nuclear region of the cells. The HepG2 and MCF7 cancer cells also had a significantly higher percentage of apoptosis and were more sensitive to gallic acid nanoparticle treatment in the cell migration assay. This study is the first to confirm the synergistic effects of gum arabic in the encapsulation of gallic acid by increasing the selectivity towards cancer cells and enhancing  the antioxidant properties. The formulated nanoparticles also had remarkably low toxicity in normal cells. Based on these findings, GANPs may have promising therapeutic applications towards the development of more effective treatments with a probable targeting precision in cancer cells.


Author(s):  
Kimberly To ◽  
Ruoqiong Cao ◽  
Aram Yegiazaryan ◽  
James Owens ◽  
Timothy Nguyen ◽  
...  

The World Health Organization (WHO) has identified type 2 diabetes (T2DM) as a neglected, important, and re-emerging risk factor for tuberculosis (TB), especially in low and middle-income countries where TB is endemic. In this clinical trial study, oral liposomal glutathione supplementation (L-GSH) or placebo was given to individuals with T2DM to investigate the therapeutic effects of L-GSH supplementation. We report that L-GSH supplementation for 3 months in people with T2DM was able to reduce the levels of oxidative stress in all blood components and prevent depletion of glutathione (GSH) in this population known to be GSH deficient. Additionally, L-GSH supplementation significantly reduced the burden of intracellular mycobacteria within in vitro granulomas generated from peripheral blood mononuclear cells (PBMCs) of T2DM subjects. L-GSH supplementation also increased the levels of Th1-associated cytokines, IFN-γ, TNF-α, and IL-2 and decreased levels of IL-6 and IL-10. In conclusion our studies indicate that oral L-GSH supplementation in individuals with T2DM for three months was able to maintain the levels of GSH, reduce oxidative stress, and diminish mycobacterial burden within in vitro generated granulomas of diabetics. L-GSH supplementation for 3 months in diabetics was also able to modulate the levels of various cytokines.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kewen Ma ◽  
Kuansong Wang ◽  
Yingjun Zhou ◽  
Nian Liu ◽  
Wei Guo ◽  
...  

Ovarian cancer is a common gynecologic aggressive neoplasm. The mortality of ovarian cancer is top among gynecologic malignancies due to the insidious onset, atypical early symptoms, and chemoresistance. Therefore, it is urgent to seek another promising treatment for ovarian cancer. Purified vitexin compound 1 (VB1) is a kind of neolignan from the seed of traditional Chinese herb vitex negundo that possessed diverse pharmacological effects. VB1 can exhibit anti-neoplastic activities against various cancers. However, the role of VB1 in ovarian cancer treatment has not been elaborated, and the mechanism is unknown. The aim of this study was to investigate the therapeutic effects of VB1 in ovarian cancer cells both in vitro and in vivo, along with the molecular mechanism of action. In vitro, VB-1 can effectively suppress the proliferation, induce apoptosis, and block cell cycle at G2/M phase with a concentration dependent manner in ovarian cancer cells. Western blot assay showed that VB1 induce apoptosis via upregulating expression of cleaved-caspase3 and block cell cycle at G2/M phase through upregulating expression of P21. Meanwhile, VB1 can effectively inhibit tumor growth in xenograft mouse model. Our research indicated that VB1 can significantly exert its anti-neoplastic effects and may represent a new class of agents in ovarian cancer therapy.


2017 ◽  
Vol 12 (9) ◽  
pp. 1934578X1701200 ◽  
Author(s):  
Radim Havelek ◽  
Martina Seifrtova ◽  
Karel Kralovec ◽  
Klara Habartova ◽  
Lucie Cahlikova ◽  
...  

This study focuses on the comparative in vitro cytotoxicity of chelidonine and homochelidonine on human cancer and non-cancer cells. Both alkaloids produced a decrease in cellular growth in a dose-dependent manner exhibiting greater potency in cancer cells. The growth inhibitory effect was evidenced in both ovarian carcinoma A2780 and lung fibroblast MRC-5 cells by inducing G2 and mitotic phase cell cycle arrest. Results indicated that the extent of apoptosis induced by chelidonine and homochelidonine was correlated to sensitivity to the antiproliferative activity of the evaluated compounds. Western blotting suggested that the cellular toxicological mechanism of chelidonine is related to the differential upregulation of phospho-Chk2, p21Cip1/Waf1, phospho-ERK1/2 and phospho-p38 in various cell types, leading to alternations in the suppression of proliferation and either induction or prevention of apoptosis. Chelidonine showed the more potent effects and also affected the cell cycle checkpoints and MAPK signaling pathways within cells.


2020 ◽  
Vol 7 (2) ◽  
pp. 59
Author(s):  
Daria S. Chulpanova ◽  
Valeriya V. Solovyeva ◽  
Victoria James ◽  
Svetlana S. Arkhipova ◽  
Marina O. Gomzikova ◽  
...  

High-dose recombinant interleukin 2 (IL2) therapy has been shown to be successful in renal cell carcinoma and metastatic melanoma. However, systemic administration of high doses of IL2 can be toxic, causing capillary leakage syndrome and stimulating pro-tumor immune response. One of the strategies to reduce the systemic toxicity of IL2 is the use of mesenchymal stem cells (MSCs) as a vehicle for the targeted delivery of IL2. Human adipose tissue-derived MSCs were transduced with lentivirus encoding IL2 (hADSCs-IL2) or blue fluorescent protein (BFP) (hADSCs-BFP). The proliferation, immunophenotype, cytokine profile and ultrastructure of hADSCs-IL2 and hADSCs-BFP were determined. The effect of hADSCs on activation of peripheral blood mononuclear cells (PBMCs) and proliferation and viability of SH-SY5Y neuroblastoma cells after co-culture with native hADSCs, hADSCs-BFP or hADSCs-IL2 on plastic and Matrigel was evaluated. Ultrastructure and cytokine production by hADSCs-IL2 showed modest changes in comparison with hADSCs and hADSCs-BFP. Conditioned medium from hADSC-IL2 affected tumor cell proliferation, increasing the proliferation of SH-SY5Y cells and also increasing the number of late-activated T-cells, natural killer (NK) cells, NKT-cells and activated T-killers. Conversely, hADSC-IL2 co-culture led to a decrease in SH-SY5Y proliferation on plastic and Matrigel. These data show that hADSCs-IL2 can reduce SH-SY5Y proliferation and activate PBMCs in vitro. However, IL2-mediated therapeutic effects of hADSCs could be offset by the increased expression of pro-oncogenes, as well as the natural ability of hADSCs to promote the progression of some tumors.


2006 ◽  
Vol 16 (6) ◽  
pp. 1987-1993 ◽  
Author(s):  
X. J. Chen ◽  
W. Zheng ◽  
L. L. Chen ◽  
Z. B. Chen ◽  
S. Q. Wang

The objective of this study was to investigate the antitumor effect of antisense telomerase oligodeoxynucleotides to endometrial cancer cells in vitro and in vivo. Antisense oligodeoxynucleotides (ODNs) against the human telomerase transcripatse (hTERT) synthesized to serve as telomerase inhibitors. Reverse transcription–polymerase chain reaction and 3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide (MTT) assay were used to test the expression of hTERT messengerRNA (mRNA) and inhibition of cell proliferation in vitro. In vivo, antitumor effects of ODNs or combined with cisplatin were evaluated in endometrial cancer xenograft. Telomerase activity was tested by telomeric repeat amplification protocol. Antisense ODNs could inhibit proliferation of human endometrial cancer cells (HEC-1-A) in vitro, and downregulate the expression hTRET mRNA in a dose- and period-dependent manner. The tumor growth inhibitory rate of low- and high-dose ODNs were 34.20% and 89.21%, and combined group was 75.30%. Telomerase activity was downregulated to 87.32% compared to the control in the ODNs-treated xenograft tumors. Antisense oligonucleotides of hTERT effectively inhibit the growth of endometrial cancer cell line. Telomerase inhibitor might be a new strategy for chemotherapy or chemoprevention in endometrial cancer.


2021 ◽  
Author(s):  
Patrick Brice Defo Deeh ◽  
Madankumar Arumugam ◽  
Karthik Alagarsamy ◽  
Gayathri Karanam ◽  
Nagabhishek Sirpu Natesh ◽  
...  

Abstract Purpose Phyllanthus muellerianus (PM) and Ficus exasperata (FE) are plants used against cancers. We evaluated the phytochemical profiles and in vitro antioxidant potentials of PM and FE, and investigate their effects on cell proliferation, intracellular calcium ([Ca2+]i), caspases 3/9, apoptosis, oxidative stress markers, and Bax/cytochrome C expression in PC-3 cells. Methods The phytochemical profiles were evaluated by liquid chromatography-mass spectrometry (LC-MS), and the antioxidant by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging method. The cells were incubated for 24 hours with 3% tween 80, paclitaxel (5 nM), PM (800 and 1200 µg/ml), and FE (800 and 1200 µg/ml). After treatments, [Ca2+]i, caspases 3/9, apoptosis and oxidative stress parameters were measured using colorimetric kits, while the mRNA levels of Bax and cytochrome C were quantified by RT‐qPCR. Results Nitidine, phloridzin and linoleic acid were identified in PM, while docosane, cardanol and chlorogenic acid were revealed in FE. The in vitro antioxidant potential of PM was greater than that of FE. Both plants inhibited the growth of PC-3 cells in a dose-dependent manner, but significantly (p<0.5-0.001) increased [Ca2+]i, apoptosis level, caspase 3/9 activities, reactive oxygen species production and lipid peroxidation, compared with control. Moreover, the activities of superoxide dismutase, catalase and glutathione peroxidase were significantly decreased in the cells incubated with the plant extracts, PM being the most effective. Paclitaxel, PM and FE upregulated Bax and cytochrome C genes in PC-3 cells. Conclusion PM and FE inhibited the growth of PC-3 cells by modulating the [Ca2+]i and inducing apoptosis through Bax/Cytochrome C/Caspase 3-9 signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document