scholarly journals Characterization and Antibacterial Properties of Metal Borates Vectorized As Ceramic Glaze Additives

Author(s):  
Osman Aguş ◽  
Osman Arslan ◽  
YÜKSEL ABALI

Abstract Metal borate nanoparticles Silver (Ag), copper (Cu) and Zinc (Zn) were produced for a novel boron containing antibacterial ceramic applications. Different concentration, temperature, time parameters were varied for obtaining hierarchical metal borate embedded formulations. Synthesized nanostructures showed interesting crystalline and optical properties since temperature and concentration adjustments provided correlated shape and surface properties. Chemical analysis and crystallinity of both copper and silver formulations were defined using XRD and confirmed that temperature plays a deep role on the production of nanostructures. XPS analysis together with TEM investigations comprehensively provided all atomic compositions with their corresponding energy values in survey and high resolution region. Morphology and atomic purity was analyzed using EDX and SEM measurements revealed the morphological orientation of the nanostructures without other impurities. FT-IR and UV-Vis spectroscopy provided optical information about the obtained metal borate nanoparticles. Finally metal borate nanoparticles were utilized for 1x1 cm ceramic glazing samples for antibacterial applications. Silver borate nanoparticles were found to be more active in low concentrations than copper and zinc borate structures after the antibacterial test results were unveiled against to gram positive and gram negative microorganisms.

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4041
Author(s):  
Adriana Cecilia Csakvari ◽  
Cristian Moisa ◽  
Dana G. Radu ◽  
Leonard M. Olariu ◽  
Andreea I. Lupitu ◽  
...  

Cannabis sativa L. (hemp) is a plant used in the textile industry and green building material industry, as well as for the phytoremediation of soil, medical treatments, and supplementary food products. The synergistic effect of terpenes, flavonoids, and cannabinoids in hemp extracts may mediate the biogenic synthesis of metal nanoparticles. In this study, the chemical composition of aqueous leaf extracts of three varieties of Romanian hemp (two monoecious, and one dioecious) have been determined by Fourier-Transformed Infrared spectroscopy (FT-IR), high-performance liquid chromatography, and mass spectrometry (UHPLC-DAD-MS). Then, their capability to mediate the green synthesis of silver nanoparticles (AgNPs) and their pottential antibacterial applications were evaluated. The average antioxidant capacity of the extracts had 18.4 ± 3.9% inhibition determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 78.2 ± 4.1% determined by 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS™) assays. The total polyphenolic content of the extracts was 1642 ± 32 mg gallic acid equivalent (GAE) L−1. After this, these extracts were reacted with an aqueous solution of AgNO3 resulting in AgNPs, which were characterized by UV−VIS spectroscopy, FT-IR, scanning electron microscopy (SEM-EDX), and dynamic light scattering (DLS). The results demonstrated obtaining spherical, stable AgNPs with a diameter of less than 69 nm and an absorbance peak at 435 nm. The mixture of extracts and AgNPs showed a superior antioxidant capacity of 2.3 ± 0.4% inhibition determined by the DPPH• assay, 88.5 ± 0.9% inhibition as determined by the ABTS•+ assay, and a good antibacterial activity against several human pathogens: Escherichia coli, Klebsiella pneumoniae, Pseudomonas fluorescens, and Staphylococcus aureus.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
José Carlos Vilar Junior ◽  
Daylin Rubio Ribeaux ◽  
Carlos Alberto Alves da Silva ◽  
Galba Maria De Campos-Takaki

This research aims to study the production of chitosan from shrimp shell (Litopenaeus vannamei) of waste origin using two chemical methodologies involving demineralization, deproteinization, and the degree of deacetylation. The evaluation of the quality of chitosan from waste shrimp shells includes parameters for the yield, physical chemistry characteristics by infrared spectroscopy (FT-IR), the degree of deacetylation, and antibacterial activity. The results showed (by Method 1) extraction yields for chitin of 33% and for chitosan of 49% and a 76% degree of deacetylation. Chitosan obtained by Method 2 was more efficient: chitin (36%) and chitosan (63%), with a high degree of deacetylation (81.7%). The antibacterial activity was tested against Gram-negative bacteria (Stenotrophomonas maltophiliaandEnterobacter cloacae) and Gram-positiveBacillus subtilisand the Minimum Inhibitory Concentrations (MIC) and the Minimum Bactericidal Concentration (MBC) were determined. Method 2 showed that extracted chitosan has good antimicrobial potential against Gram-positive and Gram-negative bacteria and that the process is viable.


2020 ◽  
Vol 12 (4) ◽  
pp. 1484 ◽  
Author(s):  
M. Asimuddin ◽  
Mohammed Rafi Shaik ◽  
Neeshat Fathima ◽  
M. Shaistha Afreen ◽  
Syed Farooq Adil ◽  
...  

Due to their low cost and environmentally friendly nature, plant extracts based methods have gained significant popularity among researchers for the synthesis of metallic nanoparticles. Herein, green synthesis of silver nanoparticles was performed using the aqueous solution of Ziziphus mauritiana leaves extract (ZM-LE) as a bio-reducing agent. The as-obtained silver nanoparticles were characterized by using UV-Vis spectroscopy, XRD (X-ray diffraction), TEM (transmission electron microscopy), and FT-IR (Fourier-transform infrared spectroscopy). In addition, the effects of the concentrations of the leaves extract, silver nitrate, and the temperature on the preparation of nanoparticles were also investigated. In order to determine the nature of secondary metabolites present in leaves extract, a preliminary investigation of phytoconstituents was carried out using different methods including Folin-Ciocalteu and AlCl3 methods. The results have indicated the presence of a considerable amount of phenolic and flavonoid contents in the leaves extract, which are believed to be responsible for the reduction of silver ions and stabilization of resulting nanoparticles. Indeed, the FT-IR spectrum of silver nanoparticles also confirmed the presence of residual phytomolecules of leaves extract as stabilizing ligands on the surface of nanoparticles. The antibacterial properties of as-obtained silver nanoparticles were tested against various bacterial strains including Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis. The nanoparticles strongly inhibited the growth of S. aureus with a minimum inhibitory concentration (MIC) of 2.5 μg/ml and moderately inhibited the growth of E. coli with a MIC of 5 μg/ml.


2020 ◽  
Vol 32 (10) ◽  
pp. 2589-2593
Author(s):  
Juhi Aggarwal ◽  
Tanveer Alam

Present paper deals with the synthesis of zinc oxide nanoparticles (ZnONPs) using leaf extract of Aristolochia elegans and study of antibacterial property for some human bacterial pathogens. The ZnONPs synthesized were characterized using UV-Vis, FT-IR, XRD, EDX, TEM and SEM techniques. The synthesized ZnONP having a crystallite size of 20.1 nm exhibited a distinct absorption peak maxima at 358 nm. The ZnONPs synthesized using the extract of A. elegans have shown antibacterial activity against M. luteus, S. aureus (Gram-positive), E. coli and P. aeruginosa (Gram-negative).


Polymers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2970
Author(s):  
Giovanni Dal Poggetto ◽  
Antonio D’Angelo ◽  
Ignazio Blanco ◽  
Simona Piccolella ◽  
Cristina Leonelli ◽  
...  

Food containers made from glass are separately collected from urban solid waste at 76% in most parts of Europe. The cullet glass finds its way to re-melting, while the debris is often disposed of. With this contribution, we suggest an upcycling process where glass debris is simply ground without any washing operation and added to an alkali-activated paste. Metakaolin-based geopolymer mortar added with coarsely ground glass waste as fine aggregate has been prepared via alkali activation with NaOH and Na-silicate. After 7, 14 and 28 days of room temperature curing time, the 3D geopolymer network was investigated by Fourier-transform infrared spectroscopy (FT-IR). Vibrational spectra revealed the geopolymerization occurrences, results which have been supported by both FT-IR deconvoluted spectra and thermogravimetric analysis (TGA). Finally, the antibacterial properties were investigated against both gram-negative (E. coli) and gram-positive (E. faecalis) bacterial strains. The results suggest the ability of the 28 days cured geopolymers to inhibit the growth of the gram-negative bacterium assayed.


2011 ◽  
Vol 695 ◽  
pp. 121-124
Author(s):  
June Seok Choi ◽  
Sang Ho Lee ◽  
Hyeok Hoi Kwon

Trace organic micropollutants have adverse effects on human health and ecosystem at low concentrations. In this study, feasibility of new catalysts for oxidation of organic micropollutants was investigated. Iron tetrasulfophthalocyanine (FeTsPc) has been immobilized on the surface of functionalized MCF (mesocellular silica form)-NH2 and MCM-41 mesoporous silicas by means of chemical bonding to ammosilane groups. MCF, prepared by precipitation from a micellar solution, consisted of unit cells which had internal void (~20 nm) and pores (~11 nm). NH2-functional groups were added to the surface of MCF and MCM-41 using (3-aminopropyl)triethoxysilane (APTES). 1-ethyl-3-(3’dimethylaminopropyl)carbodiimide (WSC) was used as a coupling agent. N-hydroxysuccinimide (NHS) was added during the reaction to improve the efficiency of amination. The prepared materials, FeTsPc/NH2-MCF and FeTsPc/NH2-MCM-41, were characterized by UV-DRS (diffuse reflectance UV-vis spectroscopy) and FT-IR. Bisphenol-A (BPA) was chosen as a model micropollutant. The catalytic activities of the supported Fe-TsPc were examined by the oxidation of BPA in the presence of hydroperoxide. The amount of immobilized FeTsPc and the specific reactivity were also analyzed to provide quantitative evaluation of the catalysts. The results indicated that the FeTsPc/NH2-MCM-41 showed higher activity and durability in the liquid-phase oxidation of BPA under mild condition compared with the FeTsPc/NH2-MCF and unsupported catalyst.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 666
Author(s):  
Faheem Ahmed ◽  
Suliman Yousef AlOmar ◽  
Fadwa Albalawi ◽  
Nishat Arshi ◽  
Sourabh Dwivedi ◽  
...  

Herein, a simple one-step microwave irradiation technique has been used to synthesize the silver nanoparticles using silver nitrate (AgNO3) solution and cetyltrimethyl ammonium bromide (CTAB) as a stabilizing agent. The crystals of as-prepared nanoparticles were studied using X-ray diffraction (XRD) and a selected area electron diffraction (SAED) pattern, confirming the single-phase face-centered cubic structure. The optical property measured using UV-Vis spectroscopy shows an absorption maximum at 420 nm, which also confirms the formation of silver nanoparticles. Transmission electron microscopy (TEM) analysis revealed that the silver nanoparticles have a spherical shape with an average diameter of ~6 nm. The antibacterial properties of silver nanoparticles were investigated using both Gram-positive and Gram-negative microorganisms, such as Staphylococcus aureus, Pseudomonas aeruginosa, andEscherichia coli. Klebsiella pneumoniae, and Candida albicans. Results showed a highest zone of inhibition of about 35 mm against P. aeruginosa as compared with E. coli (21 mm), S. aureus (30 mm), K. pneumonia (28 mm), and C. albicans (29 mm). These studies suggested that silver nanoparticles prepared by this fast and effective method might be developed as antibacterial agents against an extensive range of microorganisms to control and stop the spreading and persistence of bacterial infections.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 233
Author(s):  
Ali A. Badawy ◽  
Nilly A. H. Abdelfattah ◽  
Salem S. Salem ◽  
Mohamed F. Awad ◽  
Amr Fouda

Herein, CuO-NPs were fabricated by harnessing metabolites of Aspergillus niger strain (G3-1) and characterized using UV–vis spectroscopy, XRD, TEM, SEM-EDX, FT-IR, and XPS. Spherical, crystallographic CuO-NPs were synthesized in sizes ranging from 14.0 to 47.4 nm, as indicated by TEM and XRD. EDX and XPS confirmed the presence of Cu and O with weight percentages of 62.96% and 22.93%, respectively, at varied bending energies. FT-IR spectra identified functional groups of metabolites that could act as reducing, capping, and stabilizing agents to the CuO-NPs. The insecticidal activity of CuO-NPs against wheat grain insects Sitophilus granarius and Rhyzopertha dominica was dose- and time-dependent. The mortality percentages due to NP treatment were 55–94.4% (S. granarius) and 70–90% (R. dominica). A botanical experiment was done in a randomized block design. Low CuO-NP concentration (50 ppm) caused significant increases in growth characteristics (shoot and root length, fresh and dry weight of shoot and root, and leaves number), photosynthetic pigments (total chlorophylls and carotenoids), and antioxidant enzymes of wheat plants. There was no significant change in carbohydrate or protein content. The use of CuO-NPs is a promising tool to control grain insects and enhance wheat growth performance.


2020 ◽  
Vol 43 (1) ◽  
pp. 7-14
Author(s):  
Ali Can Ersan ◽  
Azmi Seyhun Kipcak ◽  
Meral Yildirim Ozen ◽  
Nurcan Tugrul

AbstractRecently, sonochemistry has been used for the synthesis of inorganic compounds, such as zinc borates. In this study using zinc sulphate heptahydrate (ZnSO4·7H2O) and boric acid (H3BO3) as starting materials, a zinc borate compound in the form of Zn3B6O12·3.5H2O was synthesized using an ultrasonic probe. Product’s characterization was carried out with using X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR) and Raman spectroscopy. Zinc borate compound’s chemical bond structure was observed with Raman and FTIR. From the XRD results it was seen that Zn3B6O12·3.5H2O can be quickly synthesized upon heating at 80°C and 85°C (55 min) or 90°C (45 min) in very high yield (>90%). The minimum particle size obtained was ~143 μm from the SEM results. Zinc borate compound was synthesized at a lower temperature in less time than other synthesized zinc metal compound in literature.


2021 ◽  
Vol 36 (2) ◽  
pp. 93-110
Author(s):  
Princy Philip ◽  
Tomlal Jose ◽  
Sarath KS ◽  
Sunny Kuriakose

Silver nanoparticles with 5–10 nm diameters are synthesised using Couroupita guianensis flower extract. The synthesised silver nanoparticles found to show good antimicrobial activity against gram negative and gram positive bacteria. Poly(methyl methacrylate) nanofibers with pristine, surface roughened and coaxial hollow forms are prepared by electrospinning. The structural and morphological properties of these pure and structurally modified poly(methyl methacrylate) nanofibers are evidenced by various analytical techniques. The antimicrobial studies of poly(methyl methacrylate) nanofibers having different architectures incorporated with silver nanoparticles are carried out. It is found that, all the three forms of poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show antibacterial properties against both gram positive and gram negative bacteria. Among these, surface roughened poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show highest antibacterial activity than the other two structural forms. The present study offers an alternative to the existing optical lenses. People especially those who suffer from eye problems can protect their eyes in a better way from infectious agents by wearing optical lens made from C. guianensis stabilised silver nanoparticles incorporated poly(methyl methacrylate) nanofibers than that made from pure poly(methyl methacrylate) nanofibers or films.


Sign in / Sign up

Export Citation Format

Share Document