scholarly journals Microbial Predominance and Antimicrobial Resistance in a Tertiary Hospital: A Six-year Retrospective study from Outpatients and Patients Visiting the Emergency Department

2020 ◽  
Author(s):  
CaiFeng Wang ◽  
Wen Li ◽  
Juanjuan Gao ◽  
Dancheng Zhang ◽  
Yali Li ◽  
...  

Abstract Objective: To assessing the characteristics of of microbial species and the antimicrobial resistance in a Tertiary Hospital with 49 outpatient clinics and emergency department in Northwestern China, of six years. Methods: A retrospective study was conducted using HIS database of a tertiary hospital between the full-year period of 2013 and 2018. Antimicrobial susceptibility tests were conducted by automated systems and/or the Kary-Bauer disc diffusion method. Data were analyzed using the WHONET 5.6 software. The Cochran–Armitage test was used to study the trends over the period. Results: A total of 19,028 specimens were submitted for the laboratory tests of microbiology. Among 49 units, only Emergency Department and Kidney Transplantation Clinic with the number of submission showed a significant increase annually (P<0.001). A total of 3,849 non-repetitive isolates were identified, covering more than 200 species, of which gram-positive cocci accounted for 46.4% and gram-negative bacilli 45.3%. The methicillin-resistant rates of S. aureus and S. epidermidis were 25.1% and 74.6%, respectively. The isolates of 60.9% of E. coli and 33.5% of K. pneumonia contained extended spectrum β lactamases. Moreover, there were no Staphylococci and Enterococci resistant to linezolid, vancomycin and tigecycline. In addition, the percentages of E. coli, K. pneumonia and P. aeruginosa isolates resistant to carbapenems were low (0.0%, 1.1% and 18.7%, respectively). Conclusion: Vancomycin, linezolid and tigecycline are among the most effective treatment for outpatients with gram-positive infection. Carbapenems are among the most effective for gram-negative infection. There is no significant annual increase of common multidrug resistances.

Author(s):  
Caifeng Wang ◽  
Wen Li ◽  
Juanjuan Gao ◽  
Dancheng Zhang ◽  
Yali Li ◽  
...  

Background. With the wide use of antibiotics, antimicrobial resistance becomes a serious issue. Timely understanding of microbial pathogen profiles and the change of antimicrobial resistance provide an important guidance for effective and optimized use of antibiotics in local healthcare systems. The aim was to investigate the characteristics of microbial species and their antimicrobial resistances in a tertiary hospital with an Emergency Department and outpatient clinics for a period of six years. Methodology. A retrospective study was conducted using the HIS database of a tertiary hospital between 2013 and 2018. Antimicrobial susceptibility was tested by automated systems and/or the Kirby–Bauer disc diffusion method. The data were analyzed using the WHONET 5.6 software. The Cochran-Armitage test was used to study the trends over the period of research. Results. In a total of 19,028 specimens submitted for microbial tests during the period from 49 units of the hospital, only the samples from the Emergency Department and Kidney Transplantation Clinic showed an annually significant increase ( P < 0.001 ). More than 200 species with 46.4% gram-positive cocci and 45.3% gram-negative bacilli were identified in the 3,849 nonrepetitive isolates. The methicillin-resistant S. aureus and S. epidermidis rates were 25.1% and 74.6%, respectively. 60.9% E. coli and 33.5% K. pneumonia samples carried extended-spectrum-β-lactamase. All Staphylococci and Enterococci samples were not resistant to linezolid, vancomycin, and tigecycline. In addition, only 0.01% E. coli, 1.1% K. pneumonia, and 18.7% P. aeruginosa isolates showed resistance to carbapenems. Conclusions. Vancomycin, linezolid and tigecycline were the most effective antibiotics for outpatients with gram-positive infection. Carbapenems were the most effective antibiotics for gram-negative infection. There was no significant annual increase of common multidrug resistances.


2020 ◽  
Vol 15 (2) ◽  
pp. 87-94

In this work, various concentrations of ZnO nano particles, prepared by the coprecipitation method with a size range of 47-68 nm, have been investigated as antimicrobial agents. Dilution antimicrobial susceptibility tests were carried out on two kinds of microbes (Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli) according to the standard method recommended by Clinical and Laboratory Standards Institute, CLSI-2015-M07-A10. The results showed that the antimicrobial effect is larger, the higher the concentration of ZnO nano particles in solution. It was also found that Gram-positive microbes are more sensitive to ZnO nano particles when compared with the Gram-negative ones. The minimum inhibitory concentration (MIC) for E. coli was found to be 50 mg/mL while that for S. aureus was 25 mg/mL. The minimum bactericidal concentration (MBC) was 1600 mg/mL for E. coli and 800 mg/mL for S. aureus.


2021 ◽  
Vol 30 (3) ◽  
pp. 153-162
Author(s):  
Nader A. Nemr ◽  
Rania M. Kishk ◽  
Mohammed Abdou ◽  
Hassnaa Nassar ◽  
Noha M Abu bakr Elsaid ◽  
...  

Background: Urinary tract infection (UTI) is considered one of the most common bacterial infections seen in health care. To our knowledge, there is no available antimicrobial resistance surveillance system for monitoring of community-acquired UTIs (CA- UTIs) in our country. Objectives: we aimed to discuss the bacterial pattern and resistance profile of CA-UTIs in Ismailia, Egypt. Methods: This cross-sectional study included 400 patients suffering from symptoms of acute UTIs. Urine specimens were collected by clean-catch mid-stream method, examined microscopically and inoculated immediately on blood agar and MacConkey's agar plates. Colony counting, isolation and identification of the urinary pathogens were performed by the conventional biochemical tests according to the isolated organism. Antibiotic susceptibility testing was performed by Kirby Bauer disk diffusion method. Interpretation was performed according to Clinical Laboratory Standard Institute (CLSI) guidelines. Results: out of 400 specimens, 136 of them revealed no bacterial growth or insignificant bacteriuria. Most of participants with UTI were females (81.8%) (p=0.008) and 54.5% of them were married (P=0.1). Gram negative bacteria were more common than Gram positive representing 66 % and 34% respectively. E. coli was the most common isolated organism (39%) followed by S. aureus (32%), K. Pneumoniae and Pseudomonas (10.5% for each), Proteus (6%) and Enterococci (2%). E. coli isolates showed the highest susceptibility to imipenem, meropenem, amikacin, nitrofurantoin, levofloxacin and ciprofloxacin. Most of our patients were diabetics (64.8%) (p=0.004). The mean ± SD of HbA1c was 6.4±2.0 with 4 to 12.6 range, S.E was 0.1 and 95% C.I was 6.2- 6.7. The highest mean ± SD of HbA1c was in S. aureus infections. Conclusion: Gram negative bacteria were most common than Gram positive with predominance of E. coli with significant relation to the presence of diabetes.


Diseases ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 15
Author(s):  
Ram Shankar Prasad Sah ◽  
Binod Dhungel ◽  
Binod Kumar Yadav ◽  
Nabaraj Adhikari ◽  
Upendra Thapa Shrestha ◽  
...  

Background: Antimicrobial resistance (AMR) among Gram-negative pathogens, predominantly ESBL-producing clinical isolates, are increasing worldwide. The main aim of this study was to determine the prevalence of ESBL-producing clinical isolates, their antibiogram, and the frequency of ESBL genes (blaTEM and blaCTX-M) in the clinical samples from patients. Methods: A total of 1065 clinical specimens from patients suspected of heart infections were collected between February and August 2019. Bacterial isolates were identified on colony morphology and biochemical properties. Thus, obtained clinical isolates were screened for antimicrobial susceptibility testing (AST) using modified Kirby–Bauer disk diffusion method, while ESBL producers were identified by using a combination disk diffusion method. ESBL positive isolates were further assessed using conventional polymerase chain reaction (PCR) to detect the ESBL genes blaTEM and blaCTX-M. Results: Out of 1065 clinical specimens, 17.8% (190/1065) showed bacterial growth. Among 190 bacterial isolates, 57.4% (109/190) were Gram-negative bacteria. Among 109 Gram-negative bacteria, 40.3% (44/109) were E. coli, and 30.2% (33/109) were K. pneumoniae. In AST, 57.7% (n = 63) Gram-negative bacterial isolates were resistant to ampicillin and 47.7% (n = 52) were resistant to nalidixic acid. Over half of the isolates (51.3%; 56/109) were multidrug resistant (MDR). Of 44 E. coli, 27.3% (12/44) were ESBL producers. Among ESBL producer E. coli isolates, 58.4% (7/12) tested positive for the blaCTX-M gene and 41.6% (5/12) tested positive for the blaTEM gene. Conclusion: Half of the Gram-negative bacteria in our study were MDR. Routine identification of an infectious agent followed by AST is critical to optimize the treatment and prevent antimicrobial resistance.


2019 ◽  
Vol 22 (6) ◽  
pp. 269-274
Author(s):  
Novena Risnalani Rintank Constani ◽  
Hartati Soetjipto ◽  
Sri Hartini

Peacock flower (Caesalpinia pulcherrima L.) leaves contain essential oils which can be used as an ingredient in cosmetics, perfume, aromatherapy, medicine, and supplements. The study was conducted to obtain essential oils from peacock flower leaves and determine the antibacterial activity against gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa). Antibacterial activity test was carried out by the agar diffusion method, using paper discs. Measurements were made for the inhibition zone diameter (IZD) that appeared, while the essential oil component was analyzed using GC-MS. The results showed that the peacock flower leaves (C. pulcherrima) had a moderate to strong antibacterial effect at a concentration of 7.5%-20% against gram-positive bacteria (B. subtilis and S. aureus) and gram-negative bacteria (E. coli and P. aeruginosa). Gram-negative E. coli bacteria are relatively more sensitive to peacock flower leaf essential oil compared to other test bacteria. Peacock flower (C. pulcherrima) leaf essential oil is composed of 7 main components namely β-Cubebene 33.87%; Caryophyllene 23.00%; γ-Elemene 13.18%; α-Pinene 10.96%; Cadina-1(10),4-diene 10.20%; Copaene; 7.09%; β-Pinene 1.70%.


KYAMC Journal ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 3-7
Author(s):  
Tania Rahman ◽  
Sharmeen Sultana ◽  
Taslima Akber Happy ◽  
Kamrunnahar Alo ◽  
Momtaz Begum

Background: Resistance of micro-organisms to multiple broad-spectrum antimicrobial agents is a major problem in treating neonatal sepsis. It is a matter of utmost importance to have knowledge of trends in changing pattern of antimicrobial resistance. Objective: This study was done to observe antimicrobial resistance of gram-positive and gram-negative bacteria isolated from cases of neonatal sepsis Material and Methods: This cross sectional descriptive study was conducted in Department of Microbiology in collaboration with Department of Neonatology, Dhaka Medical College Hospital, Dhaka. Antimicrobial resistance of all the isolated bacteria was performed by Modified Kirby-bauer disk diffusion method following standard guideline after isolation and identification of bacteria from blood samples of suspected septicemic neonates by automated blood culture and standard microbiological protocol. Results: All of the isolated Staphylococcus aureus, Coagulase negative Staphylococcus, Group-B Streptococcus and Micrococcus showed 100% resistance to ceftriaxone, cefotaxime and ceftazidime. Among the isolated gram-negative bacteria, all of Enterobacter spp., Pseudomonas aeruginosa and Citrobacter spp. showed 100% resistance to amoxiclav, amikacin, ceftriaxone, cefixime, ceftazidime. Conclusion: Majority of the gram-positive and gram-negative bacteria are developing resistance to multiple antimicrobial agents and surveillance is necessary to tackle this alarming situation. KYAMC Journal.2021;12(01): 03-07


2021 ◽  
Vol 33 (11) ◽  
pp. 2662-2666
Author(s):  
Amnuay Noypha ◽  
Paweena Porrawatkul ◽  
Nongyao Teppaya ◽  
Parintip Rattanaburi ◽  
Saksit Chanthai ◽  
...  

Borassus flabellifer vinegar–graphene quantum dots (BFV-GQDs) were successfully synthesized using a pyrolysis method with Borassus flabellifer vinegar (BFV) as the precursor. All the samples were characterized using ultraviolet-visible spectrophotometry (UV-Vis), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The antibacterial activities of BFV-GQDs against strains of Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) were determined using the agar well diffusion method for preliminary screening, while minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the broth macro-dilution method. The zones of inhibition were compared with those of citric acid–graphene quantum dots (CA-GQDs). It was observed that the synthesized BFV-GQDs demonstrated excellent antibacterial activity against Staphylococcus aureus (82.3%) and good antibacterial activity against Escherichia coli (73.3%). The MIC of BFV-GQDs against E. coli was 6.25 mg/mL and S. aureus was 12.5 mg/mL, whereas the MBC of BFV-GQDs against E. coli was 12.5 mg/mL and S. aureus was 25.0 mg/mL.


2020 ◽  
Author(s):  
Mingming Zhou ◽  
Liying Sun ◽  
Xuejun Chen ◽  
Chao Fang ◽  
Jianping Li ◽  
...  

Abstract Background: To determine the prevalence of Haemophilus influenzae vulvovaginitis in prepubertal girls and the antimicrobial resistance of H.influenzae strains isolated from vulval specimens.Methods: Isolates of H.influenzae from vulval swabs of prepubertal girls with vulvovaginitis received at The Children's Hospital, Zhejiang University School of Medicine during 2016-2019 were studied. Vulval specimens were inoculated on Haemophilus selective chocolate agar. Antimicrobial susceptibility tests were performed using the disk diffusion method. A cefinase disk was used to detect β-lactamase. Results: A total of 4142 vulval specimens were received during the 4 years, 649 isolates of H. influenzae were isolated from 642 girls aged 6 months to 13 years, with a median of 5y. There were peaks of isolates from April to July seen in the vulval isolates. In total, the ampicillin resistance rate was 39.1% (250/640); 33.2% strains (211/636) were for β-lactamase-positive isolates, 6.6% strains (42/635) were β-lactamase-negative and ampicillin-resistant (BLNAR) isolates. The resistance rates of H. influenzae isolates to amoxycillin-clavulanic acid, ampicillin-sulbactam, cefuroxime, ceftriaxone, cefotaxime, meropenem, levofloxacin, sulfamethoxazole-trimethoprim, azithromycin, and chloramphenicol were 26.4%, 21.8%, 24.8%, 1.7%, 1.0%, 0.2%, 0%, 47.7%, 10.2%, and 1.1%, respectively. MDR was present in 41 (6.4%) of the 642 H. influenzae isolates, with the most prevalent MDR phenotype of ampicillin-sulfamethoxazole-trimethoprim-azithromycin resistance. Conclusions: H. influenzae is a common cause of vulvovaginitis in prepubertal girls. Laboratories should ensure that they include media appropriate for the isolation of H. influenzae. It’s worth noting of ampicillin resistance of H. influenzae in clinical management.


2021 ◽  
Vol 83 (1) ◽  
pp. 49-57
Author(s):  
M.Ya. Vortman ◽  
◽  
Yu.B. Pysmenna ◽  
A.I. Chuenko ◽  
A.V. Rudenko ◽  
...  

There is information in the literature about the salts of polyhexamethylene guanidine (PGMG), which are effective biocidal and sterilizing drugs and disinfectants due to the wide range of their antimicrobial activity against gram-positive and gram-negative bacteria (including Mycobacterium tuberculosis), viruses, and fungi. The aim of this work is to study the bactericidal and fungicidal activity of the synthesized polyetherguanidinium chloride against a number of bacteria and microscopic fungi. Methods. Cultivation of microorganisms. Bacteria were grown on meat-peptone agar for 48 hours at a temperature of 28±2°C. Test cultures of micromycetes were cultured on beer wort agar (6°B), incubated for 14 days in a thermostat at a temperature of 28±2°C. Antimicrobial activity of newly synthesized polyetherguanidinium chloride was determined by standard disco-diffusion method, and fungicidal activity was determined by agar diffusion method. Results. The synthesis of polyetherguanidinium chloride was carried out in two stages. The first stage was the synthesis of a guanidinium-containing oligoether with terminal guanidine moieties by the reaction between an aromatic oligoepoxide and guanidine. The second stage was the synthesis of polyetherguanidinium chloride by the reaction between a guanidinium-containing oligoether with terminal guanidine moieties and oligooxyethylenediamine. The bactericidal and fungicidal activity of polyetherguanidinium chloride against various heterotrophic bacteria and microscopic fungi has been shown. It was found that polyetherguanidinium chloride at concentrations of 1–3% inhibited the growth of gram-negative (Escherichia coli 475, Klebsiella pneumonia 479) and gram-positive (Staphylococcus aureus 451) bacteria. The proposed 1% solution of polyetherguanidinium chloride shows a 1.5 times higher antimicrobial activity than the polymeric disinfectant polyhexamethyleneguanidinium chloride for E. coli 475 and K. pneumoniae 479 bacteria and lower antimicrobial activity for S. aureus 451 bacteria. According to the obtained data, it was noted that polyetherguanidinium chloride at a concentration of 1% had a high fungicidal activity against almost all investigated isolates: Aspergillus versicolor F-41250, Acremoneum humicola F-41252, Acremoneum roseum F-41251, Cladosporium sphaerospermum F-41255, Paecilomyces lilacinus F-41256 and Scopulariopsis candida F-41257. Conclusions. Received polyetherguanidinium chloride at a concentration of 1% showed bactericidal activity against S. aureus 451, E. coli 475, K. pneumoniae 479 and fungicidal effect to all fungi studied by us, and so can be used as a disinfectant for building materials.


2019 ◽  
Vol 12 (12) ◽  
pp. 2070-2075 ◽  
Author(s):  
Victor A. Amadi ◽  
Harry Hariharan ◽  
Ozioma A. Amadi ◽  
Vanessa Matthew-Belmar ◽  
Roxanne Nicholas-Thomas ◽  
...  

Background and Aim: There is currently no published information on the prevalence and antimicrobial susceptibility patterns of commensal Escherichia coli in dogs of Grenada origin. Monitoring antimicrobial resistance helps in the empirical selection of antibiotics. This study determined the occurrence of E. coli including the O157:H7 serotype in feces of non-diarrheic dogs of Grenada origin and the antibiotic resistance pattern of the E. coli isolates. Materials and Methods: Fecal samples from 142 of the 144 (98.6%) dogs were culture positive for E. coli. Selection of up to three colonies from each of the 142 E. coli-positive samples yielded a total of 402 E. coli isolates, which were analyzed for the presence of non-sorbitol fermenting colonies, and O157-agglutination. Results: Of the 402 E. coli isolates, 30 (7.5%) were non-sorbitol fermenters. However, none of the 402 isolates gave a positive reaction (O157:H7) to the E. coli O157:H7 latex kit. Antimicrobial susceptibility tests against 12 antibiotics revealed low resistance rates to all the tested antibiotics except for tetracycline (Te) (23.4%), cephalothin (CF) (13.2%), and ampicillin (AM) (7.7%). Thirty-nine out of the 402 (9.7%), E. coli isolates were resistant to two or more antibiotics of different classes. Conclusion: This is the first report of isolation and antimicrobial susceptibilities of commensal E. coli from non-diarrheic dogs in Grenada. Some of the isolates (39/402 isolates, 9.7%) were resistant to multiple antibiotics. This study showed that presently, dogs in Grenada should not be considered a reservoir for the E. coli O157:H7 serotype and for multiple antibiotic-resistant E. coli strains. Among the 402 E. coli isolates, the resistance rate to drugs other than Te, CF, and AM was very low.


Sign in / Sign up

Export Citation Format

Share Document