Drivers of Distribution and its Changes in two Closely Related Species with Contrasting Elevational Distributions Over two Decades

Author(s):  
Terezie Šimáková ◽  
Zuzana Münzbergová

Abstract Climate change has an enormous impact on species and communities, especially those in the alpine and arctic environments. Even though the reactions of species to climate change have been widely studied, their responses are not straightforward, and it is necessary to focus on them in more detail. In this study, we assessed the distribution of two closely related grass species Anthoxanthum odoratum , an allotetraploid species of lower altitudes and A. alpinum , a diploid occurring in higher altitudes, in the Krkonoše Mts., the Czech Republic. We explored the drivers of their current distribution and its changes over the past two decades during the ongoing climate change. The results indicate that distribution of these two species has not considerably changed, as there is only a weak evidence of a wider distribution of A. odoratum compared to the past. Surprisingly, A. alpinum has newly appeared at some localities at lower altitudes. Changes in the distribution of the two species over time were significantly related to a range of local habitat characteristics such as vegetation or bryophyte cover, nutrient level, moisture, or species composition, but were largely independent of altitude, a variable expected to be a proxy of climatic conditions of the localities. This indicates that the environmental characteristics of the localities, play more important role in species distribution and its changes than global climate change.

2007 ◽  
Vol 8 ◽  
pp. 92-95 ◽  
Author(s):  
Mandip Rai

Despite having slight disagreements on the magnitude, timing and spatial distribution of climate change, scientists agree that the recent climate change has been much faster than in the past. This has been partly to the natural phenomenon but mostly because of human activities. There is also an agreement that the poorer nations will suffer more as a consequence of the climate change than the developed nations. In this connection, the Nepalese agriculture does not seem to gain but rather lose during the process of global climate change. Even so, serious preparedness and actions can be taken that can hopefully impede the process of climate change and slowly but surely adapt to the rapidly changing climate. To achieve that, agriculture’s role as a driving force for climate change can be condensed by taking measures that reduce the rate and volume of Greenhouse Gas emissions from agriculture on the one hand, and developing diverse and resilient plant and animals breeds, on the other, that are capable of yielding as much as the current levels or even better under the foreseen changed climatic conditions. The Journal of AGRICULTURE AND ENVIRONMENT Vol. 8, 2007, pp. 92-95


Author(s):  
Partha Sarathi Datta

In many parts of the world, freshwater crisis is largely due to increasing water consumption and pollution by rapidly growing population and aspirations for economic development, but, ascribed usually to the climate. However, limited understanding and knowledge gaps in the factors controlling climate and uncertainties in the climate models are unable to assess the probable impacts on water availability in tropical regions. In this context, review of ensemble models on δ18O and δD in rainfall and groundwater, 3H- and 14C- ages of groundwater and 14C- age of lakes sediments helped to reconstruct palaeoclimate and long-term recharge in the North-west India; and predict future groundwater challenge. The annual mean temperature trend indicates both warming/cooling in different parts of India in the past and during 1901–2010. Neither the GCMs (Global Climate Models) nor the observational record indicates any significant change/increase in temperature and rainfall over the last century, and climate change during the last 1200 yrs BP. In much of the North-West region, deep groundwater renewal occurred from past humid climate, and shallow groundwater renewal from limited modern recharge over the past decades. To make water management to be more responsive to climate change, the gaps in the science of climate change need to be bridged.


2019 ◽  
Vol 22 (1) ◽  
pp. 343-360 ◽  
Author(s):  
Vally Koubi

The link between climate change and conflict has been discussed intensively in academic literature during the past decade. This review aims to provide a clearer picture of what the research community currently has to say with regard to this nexus. It finds that the literature has not detected a robust and general effect linking climate to conflict onset. Substantial agreement exists that climatic changes contribute to conflict under some conditions and through certain pathways. In particular, the literature shows that climatic conditions breed conflict in fertile grounds: in regions dependent on agriculture and in combination and interaction with other socioeconomic and political factors such as a low level of economic development and political marginalization. Future research should continue to investigate how climatic changes interact with and/or are conditioned by socioeconomic, political, and demographic settings to cause conflict and uncover the causal mechanisms that link these two phenomena.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2601
Author(s):  
Holger Rupp ◽  
Nadine Tauchnitz ◽  
Ralph Meissner

As a result of global climate change, heavy rainfall events and dry periods are increasingly occurring in Germany, with consequences for the water and solute balance of soils to be expected. The effects of climate change on nitrogen and carbon leaching were investigated using 21 non-weighable manually filled lysimeters of the UFZ lysimeter facility Falkenberg, which have been managed since 1991 according to the principles of the best management practices and organic farming. Based on a 29-year dataset (precipitation, evaporation, leachate, nitrate and dissolved organic carbon concentrations), the lysimeter years 1995/96, 2018/19, and 2003/04 were identified as extremely dry years. Under the climatic conditions in northeastern Germany, seepage fluxes were disrupted in these dry years. The reoccurrence of seepage was associated with exceptionally high nitrogen concentrations and leaching losses, which exceeded the current drinking water limits by many times and may result in a significant risk to water quality. In contrast, increased DOC leaching losses occurred primarily as a result of increased seepage fluxes.


Author(s):  
STAVROS DEMERTZIS ◽  
VASILIKI DEMERTZI ◽  
KONSTANTINOS DEMERTZIS

Global climate change has already had observable effects on the environment. Glaciers have shrunk, ice on rivers and lakes is breaking up earlier, plant and animal ranges have shifted and trees are flowering sooner. Under these conditions, air pollution is likely to reach levels that create undesirable living conditions. Anthropogenic activities, such as industry, release large amounts of greenhouse gases into the atmosphere, increasing the atmospheric concentrations of these gases, thus significantly enhancing the greenhouse effect, which has the effect of increasing air heat and thus the speedup of climate change. The use of sophisticated data analysis methods to identify the causes of extreme pollutant values, the correlation of these values with the general climatic conditions and the general malfunctions that can be caused by prolonged air pollution can give a clear picture of current and future climate change. This paper presents a thorough study of preprocessing steps of data analytics and the appropriate big data architectures that are appropriate for the research study of Climate Change and Atmospheric Science.


Author(s):  
David G. Anderson ◽  
Kirk A. Maasch

As the twenty-first century winds onward, it is becoming increasingly clear that understanding how climate affects human cultural systems is critically important. Indeed, it has been argued by many researchers that how we respond to changing global climate is one of the greatest scientific and political challenges facing our planetary technological civilization, comparable and closely intertwined with concerns about biological or nuclear warfare, famine, disease, overpopulation, or environmental degradation. By any reasonable evaluation of the evidence, this century, and likely the several centuries that follow it, will be characterized by dramatic climate change, perhaps as significant in terms of its impact on our species as any climatic episodes that have occurred in the past. What we don’t know with much certainty is how these environmental changes will play out across the planet, and how individuals as well as nation states will respond to them. Archaeology has a major role to play in helping us move through this period of crisis, however, by showing us how human cultures in the past responded to dramatic changes in climate. As the work of many archaeological scholars has shown, climate change has not invariably proven to be a bad thing: it is how people respond to it that is critical (e.g. Anderson et al. 2007b; Cooper and Sheets 2012; Crumley 2000, 2006, 2007; Hardesty 2007; McAnany and Yoffee 2010; McIntosh et al. 2000; Redman 2004a; Sandweiss and Quilter 2008; Sassaman and Anderson 1996; Tainter 2000). Archaeology working in tandem with a host of palaeoenvironmental and historical disciplines has lessons for our modern world and, as this volume demonstrates, we as a profession are making great strides in getting our message out. Perhaps the most important lesson from the past is that people, through their actions, are the drivers of cultural change, including response to climate change. Societies are not, however, monolithic entities that ‘chose’ to succeed or fail; people as individuals, groups, or factions through their actions generate outcomes, and often some demonstrate remarkable flexibility and resilience (Cooper and Sheets 2012; Diamond 2005; McAnany and Yoffee 2010).


2017 ◽  
Author(s):  
Pei Hou ◽  
Shiliang Wu ◽  
Jessica L. McCarty

Abstract. Wet deposition driven by precipitation is an important sink for atmospheric aerosols and soluble gases. We investigate the sensitivity of atmospheric aerosol lifetimes to precipitation intensity and frequency in the context of global climate change. Our study, based on the GEOS-Chem model simulation, shows that the removal efficiency and hence the atmospheric lifetime of aerosols have significantly higher sensitivities to precipitation frequencies than to precipitation intensities, indicating that the same amount of precipitation may lead to different removal efficiencies of atmospheric aerosols. Combining the long-term trends of precipitation patterns for various regions with the sensitivities of atmospheric aerosols lifetimes to various precipitation characteristics allows us to examine the potential impacts of precipitation changes on atmospheric aerosols. Analyses based on an observational dataset show that precipitation frequency in some regions have decreased in the past 14 years, which might increase the atmospheric aerosol lifetimes in those regions. Similar analyses based on multiple reanalysis meteorological datasets indicate that the precipitation changes over the past 30 years can lead to perturbations in the atmospheric aerosol lifetimes by 10 % or higher at the regional scale.


2015 ◽  
Vol 1 (2) ◽  
pp. 367-379
Author(s):  
Md Rakibul Islam ◽  
Md Jamil Hossain Biswas ◽  
Md Golam Rabbani Akanda ◽  
Md Ruhul Amin ◽  
Imam Mehedi Hasan ◽  
...  

Global climate change has triggered the increased incidence of extreme disasters like cyclone, flood, soil salinity, etc. in the coastal region of Bangladesh. In the recent past, an amplified number of fatalities happened and the greater impact also acted upon the attitude of coastal people. Badarpur Union under Patuakhali Sadar upazila of Patuakhali District was the selected locale of the concerned study. Data for this research work were personally collected from a randomly sampled 121 farmers from different villages of Badarpur union by using an interview schedule. Attitude of the farmers was ascertained through a five-point-Likert type scale. Co-efficient of correlation (r) was computed to explore the relationships between farmers? attitude and their selected characteristics. The findings revealed that 51.2 percent of the farmers had moderately favourable attitude towards climate change effect while 42.1 percent had slightly favourable and 6.6 percent had highly favourable attitude. The correlation test showed that the education, farming experience, farm size, annual income, training received and agricultural knowledge had positive significant relationships with farmers? attitude towards climate change effect on agriculture while the rest of the characteristics had no relationship in the present study. The focus findings of the present study were that, the attitude of the farmers is changing due to changes in the climatic conditions and there was a positive effect of it on agriculture.Asian J. Med. Biol. Res. June 2015, 1(2): 367-379


AoB Plants ◽  
2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Ming Hao Wang ◽  
Jing Ru Wang ◽  
Xiao Wei Zhang ◽  
Ai Ping Zhang ◽  
Shan Sun ◽  
...  

Abstract Global climate change is expected to affect mountain ecosystems significantly. Phenotypic plasticity, the ability of any genotype to produce a variety of phenotypes under different environmental conditions, is critical in determining the ability of species to acclimate to current climatic changes. Here, to simulate the impact of climate change, we compared the physiology of species of the genus Picea from different provenances and climatic conditions and quantified their phenotypic plasticity index (PPI) in two contrasting common gardens (dry vs. wet), and then considered phenotypic plastic effects on their future adaptation. The mean PPI of the photosynthetic features studied was higher than that of the stomatal features. Species grown in the arid and humid common gardens were differentiated: the stomatal length (SL) and width (SW) on the adaxial surface, the transpiration rate (Tr) and leaf mass per area (LMA) were more highly correlated with rainfall than other traits. There were no significant relationships between the observed plasticity and the species’ original habitat, except in P. crassifolia (from an arid habitat) and P. asperata (from a humid habitat). Picea crassifolia exhibited enhanced instantaneous efficiency of water use (PPI = 0.52) and the ratio of photosynthesis to respiration (PPI = 0.10) remained constant; this species was, therefore, considered to the one best able to acclimate when faced with the effects of climate change. The other three species exhibited reduced physiological activity when exposed to water limitation. These findings indicate how climate change affects the potential roles of plasticity in determining plant physiology, and provide a basis for future reforestation efforts in China.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Dan-Dan Yu ◽  
Shan Li ◽  
Zhong-Yang Guo

The evaluation of climate comfort for tourism can provide information for tourists selecting destinations and tourism operators. Understanding how climate conditions for tourism evolve is increasingly important for strategic tourism planning, particularly in rapidly developing tourism markets like China in a changing climate. Multidimensional climate indices are needed to evaluate climate for tourism, and previous studies in China have used the much criticized “climate index” with low resolution climate data. This study uses the Holiday Climate Index (HCI) and daily data from 775 weather stations to examine interregional differences in the tourist climate comfortable period (TCCP) across China and summarizes the spatiotemporal evolution of TCCP from 1981 to 2010 in a changing climate. Overall, most areas in China have an “excellent” climate for tourism, such that tourists may visit anytime with many choices available. The TCCP in most regions shows an increasing trend, and China benefits more from positive effects of climate change in climatic conditions for tourism, especially in spring and autumn. These results can provide some scientific evidence for understanding human settlement environmental constructions and further contribute in improving local or regional resilience responding to global climate change.


Sign in / Sign up

Export Citation Format

Share Document