scholarly journals Targeting CDK4 overcomes EMT-mediated tumor heterogeneity and therapeutic resistance in KRAS mutant lung cancer

Author(s):  
Aparna Padhye ◽  
Jessica Konen ◽  
B. Leticia Rodriguez ◽  
Jared Fradette ◽  
Joshua Ochieng ◽  
...  

Abstract Lack of sustained response to therapeutic agents in patients with K-Ras mutant lung cancer poses a major challenge and arises partly due to intratumor heterogeneity that defines phenotypically distinct tumor subpopulations. To attain better therapeutic outcomes it is important to understand the differential therapeutic sensitivities of tumor cell subsets. Epithelial-to-mesenchymal transition (EMT) is a biologic phenomenon that can alter the phenotypic state and cause transcriptional rewiring to produce distinct tumor cell populations. We utilized functional shRNA screens, in vitro and in vivo models to identify and confirm an increased dependence of mesenchymal tumor cells on CDK4 for survival, as well as a mechanism of resistance to MEK inhibitors. High ZEB1 levels in mesenchymal tumor cells repressed p21, leading to perturbed CDK4 pathway activity. Increased dependence on CDK4 rendered mesenchymal cancer cells particularly vulnerable to selective CDK4 inhibitors. Co-administration of CDK4 and MEK inhibitors in heterogeneous tumors effectively targeted different tumor subpopulations, subverting the resistance to either single agent treatment.

2021 ◽  
Author(s):  
Huazhen Xu ◽  
Tongfei Li ◽  
Chao Wang ◽  
Yan Ma ◽  
Yan Liu ◽  
...  

Abstract Background: Tumor-associated macrophages (TAM) are the most abundant stromal cells in the tumor microenvironment. Turning the TAM against their host tumor cells is an intriguing therapeutic strategy particularly attractive for patients with immunologically “cold” tumors. This concept was mechanistically demonstrated on in vitro human and murine lung cancer cells and their corresponding TAM models through combinatorial use of nanodiamond-doxorubicin conjugates (Nano-DOX) and a PD-L1 blocking agent BMS-1. Nano-DOX are an agent previously proved to be able to stimulate tumor cells’ immunogenicity and thereby reactivate the TAM into the anti-tumor M1 phenotype. Results: Nano-DOX were first shown to stimulate the tumor cells and the TAM to release the cytokine HMGB1 which, regardless of its source, acted through the RAGE/NF-κB pathway to induce PD-L1 in the tumor cells and PD-L1/PD-1 in the TAM. Interestingly, Nano-DOX also induced NF-κB-dependent RAGE expression in the tumor cells and thus reinforced HMGB1’s action thereon. Then, BMS-1 was shown to enhance Nano-DOX-stimulated M1-type activation of TAM both by blocking Nano-DOX-induced PD-L1 in the TAM and by blocking tumor cell PD-L1 ligation with TAM PD-1. The TAM with enhanced M1-type repolarization both killed the tumor cells and suppressed their growth. BMS-1 could also potentiate Nano-DOX’s action to suppress tumor cell growth via blocking of Nano-DOX-induced PD-L1 therein. Finally, Nano-DOX and BMS-1 achieved synergistic therapeutic efficacy against in vivo tumor grafts in a TAM-dependent manner. Conclusions: PD-L1/PD-1 upregulation mediated by autocrine and paracrine activation of the HMGB1/RAGE/NF-κB signaling is a key response of lung cancer cells and their TAM to stress, which can be induced by Nano-DOX. Blockade of Nano-DOX-induced PD-L1, both in the cancer cells and the TAM, achieves enhanced activation of TAM-mediated anti-tumor response.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1572 ◽  
Author(s):  
Daniel Salas-Treviño ◽  
Odila Saucedo-Cárdenas ◽  
María de Jesús Loera-Arias ◽  
Humberto Rodríguez-Rocha ◽  
Aracely García-García ◽  
...  

Carbon nanotubes (CNTs) have emerged in recent years as a potential option for drug delivery, due to their high functionalization capacity. Biocompatibility and selectivity using tissue-specific biomolecules can optimize the specificity, pharmacokinetics and stability of the drug. In this study, we design, develop and characterize a drug nanovector (oxCNTs-HA-CPT) conjugating oxidated multi-wall carbon nanotubes (oxCNTs) with hyaluronate (HA) and carboplatin (CPT) as a treatment in a lung cancer model in vitro. Subsequently, we exposed TC–1 and NIH/3T3 cell lines to the nanovectors and measured cell uptake, cell viability, and oxidative stress induction. The characterization of oxCNTs-HA-CPT reveals that on their surface, they have HA. On the other hand, oxCNTs-HA-CPT were endocytosed in greater proportion by tumor cells than by fibroblasts, and likewise, the cytotoxic effect was significantly higher in tumor cells. These results show the therapeutic potential that nanovectors possess; however, future studies should be carried out to determine the death pathways involved, as well as their effect on in vivo models.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 286-286 ◽  
Author(s):  
Constantine S. Mitsiades ◽  
Cecile Rouleau ◽  
Krishna Menon ◽  
Beverly Teicher ◽  
Massimo Iacobelli ◽  
...  

Abstract Introduction: Defibrotide (DF) is a polydisperse oligonucleotide with anti-thrombotic, thrombolytic, anti-ischemic, and anti-adhesive properties, which selectively targets the microvasculature and has minimal hemorrhagic risk. DF is an effective treatment for veno-occlusive disease (VOD), an important regimen-related toxicity in stem cell transplantation characterized by endothelial cell injury. DF also augments stem cell mobilization by modulating adhesion in vivo. Because of its cytoprotective effect on the endothelium, we specifically investigated whether DF protects tumor cells from cytotoxic anti-tumor agents. Further, because of its broad anti-adhesive properties, we evaluated whether DF modulates the interaction of MM cells with bone marrow stromal cells (BMSCs), which confers growth, survival and drug resistance in the BM milieu. Methods: In vitro studies in isogenic dexamethasone (Dex)-sensitive and resistant MM cell lines (MM-1S and MM1R, respectively) showed that DF does not attenuate the sensitivity of MM cells to Dex, the proteasome inhibitor bortezomib (PS-341), melphalan (MEL), vinca alkaloids (vincristine, vinblastine), taxanes (paclitaxel) or platinum (cisplatin), but does decrease their sensitivity to doxorubicin. These selective effects in vitro of DF in protecting tumor cells against doxorubicin and modestly sensitizing MM cells to platinum was also confirmed in solid tumor breast (MCF-7) and colon (HT-29) carcinoma cell lines. Although DF had minimal in vitro inhibitory effect on MM or solid tumor cell growth in vitro, it showed in vivo activity as a single agent and enhanced the responsiveness of MM tumors to cytotoxic chemotherapeutics, such as MEL or cyclophosphamide, in human MM xenografts in SCID/NOD mice. The in vivo single-agent activity and chemosensitizing properties of DF, coupled with its lack of major in vitro activity, suggested that DF may not directly target tumor cells, but rather modulate tumor cell interaction with BMSCs. In an ex vivo model of co-culture of primary MM tumor cells with BMSCs (which protects MM cells against conventional chemotherapy), DF alone had a only modest effect on tumor cell viability, but it significantly enhanced MM cell sensitivity to cytotoxic chemotherapy (e.g. MEL), suggesting that a major component of the biological effects of DF may be attributable not to direct targeting of tumor cells, but to modulation of the interactions that tumor cells develop with the local stromal milieu. Conclusion: Our studies show that DF mediates in vivo anti-MM activity by abrogating interactions of MM cells with their BM milieu, thereby enhancing sensitivity and overcoming resistance to conventional chemotherapy. These data support future clinical trials of DF, in combination with both conventional and novel therapies, to improve patient outcome in MM.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3361
Author(s):  
Emilia Wiechec ◽  
Mustafa Magan ◽  
Natasa Matic ◽  
Anna Ansell-Schultz ◽  
Matti Kankainen ◽  
...  

Cancer-associated fibroblasts (CAFs) are known to increase tumor growth and to stimulate invasion and metastasis. Increasing evidence suggests that CAFs mediate response to various treatments. HNSCC cell lines were co-cultured with their patient-matched CAFs in 2D and 3D in vitro models, and the tumor cell gene expression profiles were investigated by cDNA microarray and qRT-PCR. The mRNA expression of eight candidate genes was examined in tumor biopsies from 32 HNSCC patients and in five biopsies from normal oral tissue. Differences in overall survival (OS) were tested with Kaplan–Meier long-rank analysis. Thirteen protein coding genes were found to be differentially expressed in tumor cells co-cultured with CAFs in 2D and 81 in 3D when compared to tumor cells cultured without CAFs. Six of these genes were upregulated both in 2D and 3D (POSTN, GREM1, BGN, COL1A2, COL6A3, and COL1A1). Moreover, two genes upregulated in 3D, MMP9 and FMOD, were significantly associated with the OS. In conclusion, we demonstrated in vitro that CAF-derived signals alter the tumor cell expression of multiple genes, several of which are associated with differentiation, epithelial-to-mesenchymal transition (EMT) phenotype, and metastasis. Moreover, six of the most highly upregulated genes were found to be overexpressed in tumor tissue compared to normal tissue.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4480-4480
Author(s):  
Aneel Paulus ◽  
Sharoon Akhtar ◽  
Yamima Bashir ◽  
Shumail M. Paulus ◽  
Richa Menghani ◽  
...  

Abstract Introduction. In comparison toCLL, single agent clinical efficacy of venetoclax (a Bcl-2 inhibitor; Bcl-2i) in multiple myeloma (MM) has been modest (ORR of ~12%; Kumar et al ASCO 2016). Clinical experience to date unequivocally directs towards a combination strategy in MM for venetoclax. Our prior work has demonstrated that interaction between tumor and stromal cells upregulates phospho-Bcl-2 (pBcl-2, more stable than Bcl-2) which undermines activity of Bcl-2i. We also noted that this can be overcome using agents such as lenalidomide, which can impair the protective effect of stromal cells. Our goal in this investigation was to determine if the antitumor effect of lenalidomide/dexamethasone (Ld) regimen can be further optimized through leveraging the Bcl-2 targeting properties of venetoclax thereby sensitizing MM cells to enhanced lethality. Given the known effects of Ld on activating host immune effector cells, we hypothesized that immune mediated cytotoxicity (engaged by Ld) can be further enhanced through concurrent treatment with venetoclax. Data presented here provides preclinical rationale and proof-of-principle for clinical development of Bcl-2i in combination with Ld. Methodology. Malignant plasma cell cancer models (MM1.S, BCWM.1, KMS11) and stromal cell line (HS5) were used. Bcl-2 and pBcl-2 were determined by flow cytometry. Drug cytotoxicity was determined by MTS assay and/orAnnexin-V/PI staining. SCID mice were used for xenograft studies. Bcl-2 inhibitors (venetoclax; Bcl-2 specific inhibitor, AT-101; pan Bcl-2 inhibitor) as well asLd were purchased from commercial sources. Results. Tumor cell lines were treated with Bcl-2i for 24hrs and showed significant loss of viability (51 - 68%) and induction of apoptosis (~40%) in vitro. To replicate microenvironment conditions, we co-cultured tumor and stromal cells for 48hrs followed by treatment with Bcl-2i (1uM). Under these conditions, we noted a significant reduction in apoptosis (~50%) in Bcl-2i-treated cells indicating the protective effect of the stroma (Fig.1a). Under similar settings, we examined Bcl-2 species in tumor cells +/- stromal cells. The ratio of pBcl-2:Bcl-2 in tumor cells without stromal contact was 0.7, whereas, the ratio increased to 1.8 when tumor and stromal cells were cocultured suggesting increased pBcl-2 as a protective mechanism (Fig.1b,c). We then investigated the potential of Ld (1uM) +/- Bcl-2i to downregulate pBcl-2:Bcl-2 and whether this correlated with increased tumor lethality. While solo Bcl-2i treatment of tumor + stromal cells downregulated pBcl-2 and Bcl-2 (ratio 1.5), a marked reduction was noted in Ld + Bcl-2i treated tumor cells (ratio of 0.3). And this correlated with enhanced tumor cell apoptosis; analogous to that observed in tumor cells without stroma (Fig.1a and c). As these experiments indicated the triple combination to overcome protective effects of the stroma through decreasing bioavailability of pBcl-2 in vitro, we next validated these observations in a xenograft model. MM1.S cells were subcutaneously implanted in SCID mice with local tumor growth monitored by caliper measurement and systemic dissemination measured by Human-Ig lambda levels. DMSO-treated mice demonstrated tumors averaging ~410mm3 by Day 24 post-tumor implantation, whereas mice treated with Bcl-2i (35mg/kg QD, oral gavage) or Ld alone (Len 10mg/kg QD; Dex 0.5mg/kg QD, IP injection) showed tumors ~330mm3. In Ld + Bcl-2i- treated mice, tumor size was ~250mm3- significantly lower than DMSO (p<0.001) or Bcl-2i orLd group mice (p<0.054) (Fig.1d). A similar trend was seen when systemic Human-Ig-lambda was measured (Fig.1e). Notably, mice tolerated the triple combination treatment well; with no significant weight loss or other toxicities noted. Conclusions. Regulation of the Bcl-2 pathway is an important approach for controlling tumor cell proliferation; most recently validated with the approval of venetoclax for treatment of CLL. Herein we demonstrateLd as an attractive partner regimen to enhance the effects of not only Bcl-2i but also that ofLd in MM. Ongoing work is investigating the combination ofLd + venetoclax and preliminary in vitro results in venetoclax-insensitive MM cells (IC50 >5uM) show significant apoptosis induction with combination therapy (Fig.1f). Altogether our studies provide the rationale for clinical evaluation of this combination platform (Len/Dex + Bcl-2i). Disclosures Ailawadhi: Pharmacyclics: Consultancy; Novartis: Consultancy; Amgen Inc: Consultancy; Takeda Oncology: Consultancy.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hua-Zhen Xu ◽  
Tong-Fei Li ◽  
Chao Wang ◽  
Yan Ma ◽  
Yan Liu ◽  
...  

Abstract Background Tumor-associated macrophages (TAMs) are the most abundant stromal cells in the tumor microenvironment. Turning the TAMs against their host tumor cells is an intriguing therapeutic strategy particularly attractive for patients with immunologically “cold” tumors. This concept was mechanistically demonstrated on in vitro human and murine lung cancer cells and their corresponding TAM models through combinatorial use of nanodiamond-doxorubicin conjugates (Nano-DOX) and a PD-L1 blocking agent BMS-1. Nano-DOX are an agent previously proved to be able to stimulate tumor cells’ immunogenicity and thereby reactivate the TAMs into the anti-tumor M1 phenotype. Results Nano-DOX were first shown to stimulate the tumor cells and the TAMs to release the cytokine HMGB1 which, regardless of its source, acted through the RAGE/NF-κB pathway to induce PD-L1 in the tumor cells and PD-L1/PD-1 in the TAMs. Interestingly, Nano-DOX also induced NF-κB-dependent RAGE expression in the tumor cells and thus reinforced HMGB1’s action thereon. Then, BMS-1 was shown to enhance Nano-DOX-stimulated M1-type activation of TAMs both by blocking Nano-DOX-induced PD-L1 in the TAMs and by blocking tumor cell PD-L1 ligation with TAM PD-1. The TAMs with enhanced M1-type repolarization both killed the tumor cells and suppressed their growth. BMS-1 could also potentiate Nano-DOX’s action to suppress tumor cell growth via blocking of Nano-DOX-induced PD-L1 therein. Finally, Nano-DOX and BMS-1 achieved synergistic therapeutic efficacy against in vivo tumor grafts in a TAM-dependent manner. Conclusions PD-L1/PD-1 upregulation mediated by autocrine and paracrine activation of the HMGB1/RAGE/NF-κB signaling is a key response of lung cancer cells and their TAMs to stress, which can be induced by Nano-DOX. Blockade of Nano-DOX-induced PD-L1, both in the cancer cells and the TAMs, achieves enhanced activation of TAM-mediated anti-tumor response. Graphic abstract


2019 ◽  
Vol 2 (4) ◽  
pp. 83-98 ◽  
Author(s):  
André De Lima Mota ◽  
Bruna Vitorasso Jardim-Perassi ◽  
Tialfi Bergamin De Castro ◽  
Jucimara Colombo ◽  
Nathália Martins Sonehara ◽  
...  

Breast cancer is the most common cancer among women and has a high mortality rate. Adverse conditions in the tumor microenvironment, such as hypoxia and acidosis, may exert selective pressure on the tumor, selecting subpopulations of tumor cells with advantages for survival in this environment. In this context, therapeutic agents that can modify these conditions, and consequently the intratumoral heterogeneity need to be explored. Melatonin, in addition to its physiological effects, exhibits important anti-tumor actions which may associate with modification of hypoxia and Warburg effect. In this study, we have evaluated the action of melatonin on tumor growth and tumor metabolism by different markers of hypoxia and glucose metabolism (HIF-1α, glucose transporters GLUT1 and GLUT3 and carbonic anhydrases CA-IX and CA-XII) in triple negative breast cancer model. In an in vitro study, gene and protein expressions of these markers were evaluated by quantitative real-time PCR and immunocytochemistry, respectively. The effects of melatonin were also tested in a MDA-MB-231 xenograft animal model. Results showed that melatonin treatment reduced the viability of MDA-MB-231 cells and tumor growth in Balb/c nude mice (p <0.05). The treatment significantly decreased HIF-1α gene and protein expression concomitantly with the expression of GLUT1, GLUT3, CA-IX and CA-XII (p <0.05). These results strongly suggest that melatonin down-regulates HIF-1α expression and regulates glucose metabolism in breast tumor cells, therefore, controlling hypoxia and tumor progression. 


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A12-A12
Author(s):  
Jun Zhou ◽  
Shuang Zhu ◽  
Hongjuan Zhang ◽  
Lei Zheng ◽  
Mingfa Zang ◽  
...  

BackgroundBispecific T cell engagers (BiTE) is a fast-growing class of immunotherapies. They are bispecific antibody that bind to T cell-surface protein (for example, CD3e) and a specific tumor associate antigen (TAA) on tumor cells, by which to redirect T cells against tumor cells in a MHC-independent manner. A successful example in the clinical is Blinatumomab, a BiTE antibody against CD3/CD19 approved in 2014 to treat acute lymphoblastic leukemia. Currently, many CD3-based BiTE are in clinical trials, including BCMAxCD3, Her2xCD3, CEAxCD3, and PSMAxCD3. To evaluate the efficacy of BiTE in vitro, human peripheral blood monocyte cells (hPBMC) are commonly being used as a source of T cells to co-culture with tumor cells. The disadvantage of using hPBMC is donor-to-donor variability and the availability of the original donor if a study needs to be repeated.MethodsTo overcome this, we proposed to replace hPBMC with T cells from human CD3e (hCD3) genetically engineered mouse models mice (GEMM) for in in vitro coculture assay. T cells were isolated from hCD3 GEMM mice using negative selection mouse T cell isolation kit. Conventional tumor cell lines or luciferase-engineered patient-derived-xenograft (PDX)-derived organoids (PDXO) expressing specific antigens are co-cultured with hCD3 T cells in 96-well plates in the presence of BiTE antibody.ResultsWe measured the killing of tumor cells using either flow cytometry or luciferase activity as readouts. To analyze tumor-reactivity of T cells to cancer cell line or organoids, IFN-gamma in the culture medium was measured and activation markers on T cells was assessed.ConclusionsOur data showed the feasibility of using humanized mice T cells as a replacement for hPBMCs to assess BiTE antibody in vitro. We are further validating the application of murine hCD3 T cells for in vivo models to test bispecific T cell engagers.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii278-iii278
Author(s):  
Viktoria Melcher ◽  
Monika Graf ◽  
Marta Interlandi ◽  
Natalia Moreno ◽  
Flavia W de Faria ◽  
...  

Abstract Atypical teratoid/rhabdoid tumors (ATRT) are pediatric brain neoplasms that are known for their heterogeneity concerning pathophysiology and outcome. The three genetically rather uniform but epigenetically distinct molecular subgroups of ATRT alone do not sufficiently explain the clinical heterogeneity. Therefore, we examined the tumor microenvironment (TME) in the context of tumor diversity. By using multiplex-immunofluorescent staining and single-cell RNA sequencing (scRNA-seq) we unveiled the pan-macrophage marker CD68 as a subgroup-independent negative prognostic marker for survival of ATRT patients. ScRNA-seq analysis of murine ATRT-SHH, ATRT-MYC and extracranial RT (eRT) provide a delineation of the TME, which is predominantly infiltrated by myeloid cells: more specifically a microglia-enriched niche in ATRT-SHH and a bone marrow-derived macrophage infiltration in ATRT-MYC and eRT. Exploring the cell-cell communication of tumor cells with tumor-associated immune cells, we found that Cd68+ tumor-associated macrophages (TAMs) are central to intercellular communication with tumor cells. Moreover, we uncovered distinct tumor phenotypes in murine ATRT-MYC that share genetic traits with TAMs. These intermediary cells considerably increase the intratumoral heterogeneity of ATRT-MYC tumors. In vitro co-culture experiments recapitulated the capability of ATRT-MYC cells to interchange cell material with macrophages extensively, in contrast to ATRT-SHH cells. We found that microglia are less involved in the exchange of information with ATRT cells and that direct contact is a prerequisite for incorporation. A relapse xenograft model implied that intermediary cells are involved in the acquisition of chemotherapy resistance. We show evidence that TAM-tumor cell interaction is one mechanism of chemotherapy resistance and relapse in ATRT.


Sign in / Sign up

Export Citation Format

Share Document