scholarly journals Downregulation of HBx Restrains Proliferation, Migration and Invasion of HepG2 Cells

2020 ◽  
Author(s):  
Chaoqun Huang ◽  
Wei Liu ◽  
Xiaochuan Zhao ◽  
Libin Zhao ◽  
Fuxiang Wang

Abstract Background: Liver cancer is a frequent malignancy with high fatality. Hepatic B virus X protein (HBx) could promote theprogression of liver cancer. Meanwhile, aberrantly expressed XB130 was identified in liver cancer. However, relevant molecular mechanism is poorly studied. Our present study mainly investigated the mechanism of liver cancer.Methods: After microarray-based analyses in liver cancer tissues and the matched adjacent normal tissues, upregulated mRNA was screened out. Contents of HBx and XB130 in liver cancer tissues as well as cells HepG2 were examined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Correlation between HBx and XB130 was analyzed in HepG2 cells, followed by verification by RIP assay. After gain- and loss-of-function experiments, cellular proliferation, invasion, migration and colony formation ability were assessed using CCK-8, Transwell, wound healing experiment and colony formation assay.Results: Both HBx and XB130 expression was elevated in liver cancer, which was correlated with poor survival rate of liver cancer patients. Moreover, HBx and XB130 were positively correlated in HepG2 cells. RIP assay verified that HBx could bind to XB130. Loss of HBx hindered proliferation, and migration/invasion of HepG2 cells but promoted apoptosis, which was partially reversed by overexpressed XB130.Conclusion: The conclusion reached from the study offered an understanding of the role of HBx/XB130 played in liver cancer. Our study first reported the regulatory relation between HBx and XB130, which may be valuable to discover therapeutic targets for liver cancer treatment.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chaoqun Huang ◽  
Wei Liu ◽  
Xiaochuan Zhao ◽  
Libin Zhao ◽  
Fuxiang Wang

Liver cancer is a major contributor to cancer-related death with poor survival for sufferers. Meanwhile, Hepatic B virus X protein (HBx) and XB130 are likely to participate in the pathogenesis of liver cancer. However, the detailed mechanism of HBx/XB130 in liver cancer remains to be further investigated. Our study explored the effects of HBx/XB130 on liver cancer progression. HBx and XB130 expression was detected by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot. Overexpression of HBx and XB130 was found in liver cancer tissues and cells. Mechanistic study revealed that HBx could bind to and positively regulate XB130 in HepG2 cells. Subsequently, HBx expression was knocked down, while XB130 was overexpressed in HepG2 cells in order to observe the specific role of HBx/XB130 in liver cancer in vitro. Results of CCK-8, Transwell, wound healing, and colony formation assays suggested that HBx could mediate biological function of HepG2 cells by activating the XB130-mediated PI3K/AKT pathway. In summary, our data illustrate that inhibition of HBx effectively suppressed proliferation and metastasis and induced apoptosis of liver cancer cells, which might be partially reversed by XB130. HBx and XB130 may be potential targets for liver cancer pathogenesis.


2020 ◽  
Author(s):  
Ding Shi ◽  
Xiaoxia Xi

Abstract Background: The aim of this study was to investigate the mechanism of the downregulation of MUC6 and its influence on GC metastasis.Methods: The expression of MUC6 was examined in cancer tissues and their corresponding adjacent normal tissues in 40 gastric adenocarcinoma patients. The investigation of methylation level of MUC6 promoter region in gastric cell lines and gastric specimen tissues was performed through immunohistochemistry and/or quantitative polymerase chain reaction (qPCR)s. MUC6 was knocked down in GES-1 cell lines and overexpressed in SGC7901 cell lines; the effects of MUC6 knockdown and overexpression on cell migration and invasion were examined using Transwell migration assay. The effects of demethylation and methylation on MUC6 expression were examined using Western blot, qPCR, or double luciferase report experiment.Results: The expression of MUC6 in GC tissues was significantly lower than that in normal paracancerous tissues. While the cells migration and invasion abilities were decreased significantly after overexpression of MUC6, these abilities increased significantly after the knocking down of MUC6. The methylation levels of MUC6 in GC tissues and GC cell lines (MGC803, MKN45, AGS, SGC7901, and BGC823) were significantly higher than those in paracancerous tissues and gastric epithelial cells. The promoter methylation could significantly reduce the binding of MUC6 promoter region to the related transcription factors. The expression of MUC6 increased with the concentration of demethylated drugs and the time of action.Conclusion: The expression of MUC6 was regulated by methylation of its promoter, and this methylation of MUC6 promoter may lead to significant downregulation of MUC6 in GC and promote the metastasis of GC.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ding Shi ◽  
Zheng Zhou ◽  
Shun Zhang

Background. Data on the correlation between CST4 and colorectal cancer (CRC) metastasis are scarce. The aim of this study was to analyze CST4 expression and investigate its biological roles and related microRNA- (miRNA-) mediated regulation in CRC. Methods. The expression of CST4 was examined in cancer tissues and their corresponding adjacent normal tissues from 40 gastric adenocarcinoma patients. The expression level of CST4 in specimens (cancer and normal tissues) was assessed through immunohistochemistry and/or quantitative polymerase chain reaction. miRNAs targeting CST4 in CRC were predicted by bioinformatics software. CST4 was knocked down in HCT116 cells and candidate miRNAs were transfected into HCT116 cells, and the effects of CST4 knockdown and miRNA transfection on cell proliferation and invasion were examined using CCK8, cell colony formation, and Transwell migration assays. Luciferase double-reporter assays were performed to verify the relationship between miRNA and CST4. Results. The expression of CST4 in CRC tissues was significantly higher than that in normal paracancerous tissues, but the results for miRNA-6715-5p were opposite. Regardless of CST4 knockdown or miRNA-6715-5p overexpression, the proliferation and invasion ability of HCT116 cells decreased significantly. Luciferase double-reporter assays showed that the upregulation of miR-6715-5p significantly reduced the luciferase activities of the CST4 3′-UTR plasmid in HCT116 cells. Conclusion. CST4 may be involved in CRC proliferation and metastasis. miRNA-6715-5p directly targets CST4 and negatively regulates its expression.


2018 ◽  
Vol 19 (10) ◽  
pp. 3213 ◽  
Author(s):  
Hye-Jin Sung ◽  
Jung-Mo Ahn ◽  
Yeon-Hee Yoon ◽  
Sang-Su Na ◽  
Young-Jin Choi ◽  
...  

As lung cancer shows the highest mortality in cancer-related death, serum biomarkers are demanded for lung cancer diagnosis and its treatment. To discover lung cancer protein biomarkers, secreted proteins from primary cultured lung cancer and adjacent normal tissues from patients were subjected to LC/MS–MS proteomic analysis. Quiescin sulfhydryl oxidase (QSOX1) was selected as a biomarker candidate from the enriched proteins in the secretion of lung cancer cells. QSOX1 levels were higher in 82% (51 of 62 tissues) of lung cancer tissues compared to adjacent normal tissues. Importantly, QSOX1 serum levels were significantly higher in cancer patients (p < 0.05, Area Under curve (AUC) = 0.89) when measured by multiple reaction monitoring (MRM). Higher levels of QSOX1 were also uniquely detected in lung cancer tissues, among several other solid cancers, by immunohistochemistry. QSOX1-knock-downed Lewis lung cancer (LLC) cells were less viable from oxidative stress and reduced migration and invasion. In addition, LLC mouse models with QSOX1 knock-down also proved that QSOX1 functions in promoting cancer metastasis. In conclusion, QSOX1 might be a lung cancer tissue-derived biomarker and be involved in the promotion of lung cancers, and thus can be a therapeutic target for lung cancers.


2018 ◽  
Vol 32 ◽  
pp. 205873841881434 ◽  
Author(s):  
Genglong Zhu ◽  
Xialei Liu ◽  
Haijing Li ◽  
Yang Yan ◽  
Xiaopeng Hong ◽  
...  

Liver cancer is one of the most common and lethal cancers in human digestive system, which kills more than half a million people every year worldwide. This study aimed to investigate the effects of kaempferol, a flavonoid compound isolated from vegetables and fruits, on hepatic cancer HepG2 cell proliferation, migration, invasion, and apoptosis, as well as microRNA-21 (miR-21) expression. Cell viability was detected using cell counting kit-8 (CCK-8) assay. Cell proliferation was measured using 5-bromo-2′-deoxyuridine (BrdU) incorporation assay. Cell apoptosis was assessed using Guava Nexin assay. Cell migration and invasion were determined using two-chamber migration (invasion) assay. Cell transfection was used to change the expression of miR-21. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to analyze the expressions of miR-21 and phosphatase and tensin homologue (PTEN). Expression of key proteins involved in proliferation, apoptosis, migration, invasion, and phosphatidylinositol 3-kinase/protein kinase 3/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway were evaluated using western blotting. Results showed that kaempferol significantly inhibited HepG2 cell proliferation, migration, and invasion, and induced cell apoptosis. Kaempferol remarkably reduce the expression of miR-21 in HepG2 cells. Overexpression of miR-21 obviously reversed the effects of kaempferol on HepG2 cell proliferation, migration, invasion, and apoptosis. Moreover, miR-21 negatively regulated the expression of PTEN in HepG2 cells. Kaempferol enhanced the expression of PTEN and inactivated PI3K/AKT/mTOR signaling pathway in HepG2 cells. In conclusion, kaempferol inhibited proliferation, migration, and invasion of HepG2 cells by down-regulating miR-21 and up-regulating PTEN, as well as inactivating PI3K/AKT/mTOR signaling pathway.


2018 ◽  
Vol 48 (1) ◽  
pp. 173-184 ◽  
Author(s):  
Jiamei Liu ◽  
Danbo Wang ◽  
Zaiqiu Long ◽  
Jing Liu ◽  
Weishan Li

Background/Aims: Circular RNAs (circRNAs) play a significant role in the development and progression of various human cancers. However, the expression and function of circRNAs in cervical cancer (CC) have rarely been explored. The aim of this study was to investigate the biological function of circRNA8924 in CC and elucidate the possible molecular mechanism involved. Methods: Quantitative polymerase chain reaction was used to determine mRNA expression of circRNA8924, miR-518d-5p/519-5p and CBX8 in CC tissues and cells. CBX8 protein expression was measured by Western blotting. The CCK-8 assay was used to evaluate cell proliferation, and the transwell assay to determine cell migration and invasion. The luciferase reporter assay was used to determine the direct regulation of miR-518d-5p/519-5p and circRNA8924 or CBX8 Results: The study demonstrated that the expression level of circRNA8924 in CC was significantly higher than that in the adjacent normal tissues (P < 0.001), and that it was also associated with tumor size, FIGO staging and myometrial invasion. The knockdown of circRNA8924 significantly inhibited the proliferation, migration and invasion of CC cells SiHa and HeLa. The expression level of miR-518d-5p/519-5p was negatively correlated with circRNA8924, and circRNA8924 regulated CBX8 by competitively binding to miR-518d-5p/519-5p. Conclusions: CircRNA8924 is highly expressed in CC tissue and can be considered a competitive endogenous RNA of the miR-518d-5p/519-5p family to promote the malignant biological behavior of CC cells. It is suggested that it may serve as a new biomarker for CC diagnosis and disease progression and provide potential targets for targeted therapy.


2020 ◽  
Vol 35 (3) ◽  
pp. 83-89
Author(s):  
Rong Yan ◽  
Kang Li ◽  
Dawei Yuan ◽  
Haonan Wang ◽  
Wei Chen ◽  
...  

Background: MiR-183-5p plays an important role in the pathophysiology of many tumors, while the role of MiR-183-5p in liver cancer is unclear. Methods: In this study, quantitative reverse transcription-polymerase chain reaction and Western blotting were used to detect the expression of miR-183-5p in liver cancer cell lines, liver cancer tissues, and normal tissues adjacent to the cancer, and to explore the mechanism of miR-183-5p regulating liver cancer progression. The in vitro effects of miR-183-5p were evaluated by CCK-8, colony formation test, and wound healing test. Various databases were used to predict the target mRNA of miR-183-5p and verified by luciferase report analysis. In addition, the effects of miR-183-5p and its target gene on the survival of patients with liver cancer were also analyzed. Results: miR-183-5p was highly expressed in hepatocellular carcinoma cells and tissues, and was related to some clinicopathological features. MiR-183-5p can promote the proliferation and migration of liver cancer cells. Using the bioinformatics database, we proved that miR-183-5p is related to the survival of liver cancer patients. Insulin receptor substrate 1 (IRS1) is a target of miR-183-5p, and luciferase analysis confirmed that miR-183-5p combines with the 3′-untranslated region (3′-UTR) of IRS1. Conclusion: The miR-183-5p/IRS1 axis may be a new target for liver cancer research.


2019 ◽  
Vol 10 (11) ◽  
Author(s):  
Zhengzhao Li ◽  
Junyu Lu ◽  
Guang Zeng ◽  
Jielong Pang ◽  
Xiaowen Zheng ◽  
...  

Abstract This study was designed to investigate the mechanism by which miR-129-5p affects the biological function of liver cancer cells. The expression levels of miR-129–5p in liver cancer tissues and cells were, respectively, determined. Crystal violet staining and flow cytometry were used to detect cell proliferation and apoptosis. Wound healing assay and transwell assay were performed to test cell migration and invasion. The target gene of miR-129–5p was analyzed and verified by bioinformatics analysis and luciferase reporter assay. Tumorigenicity assays in nude mice were used to test the antitumor ability of calcium calmodulin-dependent protein kinase IV (CAMK4). miR-129–5p was found to be underexpressed in hepatocellular cancer tissues and cells and also to inhibit liver cells proliferation, migration, and invasion and promote apoptosis. CAMK4 was a direct target for miR-129–5p and was lowly expressed in liver cancer tissues and cells. CAMK4 was also found to inhibit liver cells proliferation, migration and invasion, and promote apoptosis. CAMK4 might exert an antitumor effect by inhibiting the activation of mitogen-activated protein kinase (MAPK). MiR-129–5p was a tumor suppressor with low expression in liver cancer tissues and cells. CAMK4, which is a direct target gene of miR-129–5p, could inhibit tumor by inhibiting the activation of MAPK signaling pathway.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Xue-Yang Li ◽  
Yi Hu ◽  
Nian-Shuang Li ◽  
Jian-Hua Wan ◽  
Yin Zhu ◽  
...  

Background. The receptor of activated protein kinase C 1 (RACK1) promotes the progression and invasion of several cancers. However, the role of RACK1 in the pathogenesis of colorectal cancer (CRC) has not been clearly defined. Herein, we aimed to investigate the biological role of RACK1 in CRC. Materials and Methods. The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) dataset were searched, and the expression of RACK1 in CRC tissues and adjacent normal tissues was evaluated. Immunohistochemical staining was performed to detect the expression of RACK1 in human CRC, adenoma, and normal tissues. Western blotting was used to detect the expression of RACK1 in human CRC cell lines. Functional assays, such as BrdU, colony formation, and wound healing and transwell invasion assays, were used to explore the biological role of RACK1 in CRC. Results. RACK1 was upregulated in CRC tissues compared with its expression in adjacent normal tissues in TCGA and the GEO dataset (P<0.05). Moreover, RACK1 was significantly overexpressed in CRC and adenoma tissues compared with its expression in normal tissues (P<0.05). Loss-of-function experiments showed that RACK1 promoted cell proliferation, migration, and invasion in vitro. Conclusions. Our data indicated that RACK1, as an oncogene, markedly promoted the progression of CRC, which suggested that RACK1 is a potential therapeutic target for CRC management.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 393 ◽  
Author(s):  
Lulu Xie ◽  
Minjing Li ◽  
Desheng Liu ◽  
Xia Wang ◽  
Peiyuan Wang ◽  
...  

Liver cancer is a very common and significant health problem. Therefore, powerful molecular targeting agents are urgently needed. Previously, we demonstrated that secalonic acid-F (SAF) suppresses the growth of hepatocellular carcinoma (HCC) cells (HepG2), but the other anticancer biological functions and the underlying mechanism of SAF on HCC are unknown. In this study, we found that SAF, which was isolated from a fungal strain in our lab identified as Aspergillus aculeatus, could inhibit the progression of hepatocellular carcinoma by targeting MARCH1, which regulates the PI3K/AKT/β-catenin and antiapoptotic Mcl-1/Bcl-2 signaling cascades. First, we confirmed that SAF reduced the proliferation and colony formation of HCC cell lines (HepG2 and Hep3B), promoted cell apoptosis, and inhibited the cell cycle in HepG2 and Hep3B cells in a dose-dependent manner. In addition, the migration and invasion of HepG2 and Hep3B cells treated with SAF were significantly suppressed. Western blot analysis showed that the level of MARCH1 was downregulated by pretreatment with SAF through the regulation of the PI3K/AKT/β-catenin signaling pathways. Moreover, knockdown of MARCH1 by small interfering RNAs (siRNAs) targeting MARCH1 also suppressed the proliferation, colony formation, migration, and invasion as well as increased the apoptotic rate of HepG2 and Hep3B cells. These data confirmed that the downregulation of MARCH1 could inhibit the progression of hepatocellular carcinoma and that the mechanism may be via PI3K/AKT/β-catenin inactivation as well as the downregulation of the antiapoptotic Mcl-1/Bcl-2. In vivo, the downregulation of MARCH1 by treatment with SAF markedly inhibited tumor growth, suggesting that SAF partly blocks MARCH1 and further regulates the PI3K/AKT/β-catenin and antiapoptosis Mcl-1/Bcl-2 signaling cascade in the HCC nude mouse model. Additionally, the apparent diffusion coefficient (ADC) values, derived from magnetic resonance imaging (MRI), were increased in tumors after SAF treatment in a mouse model. Taken together, our findings suggest that MARCH1 is a potential molecular target for HCC treatment and that SAF is a promising agent targeting MARCH1 to treat liver cancer patients.


Sign in / Sign up

Export Citation Format

Share Document