scholarly journals Synthesis of a New Phosphorus/Nitrogen Durable Flame Retardant for Cotton Fabrics

Author(s):  
Jinfeng Li ◽  
Wei Jiang ◽  
Maolin Liu

Abstract Phosphorus/nitrogen flame retardant ammonium three phosphoric acid glycerol ester (FR) with reactive -P-O−NH4+ groups was synthesized from glycerol, phosphoric acid and urea. At high temperature, the -P-O−NH4+ group in FR is decomposed into -P-O−H+ group. Under the action of catalyst dicyandiamide, -P-O−H+ forms phosphonic anhydride. Phosphonic anhydride can dehydrate and condense with the hydroxyl group on the 6-position carbon atom in the glucose ring of cotton fiber, forming a firm P-O-C bond, thus fixing FR molecule firmlyon cotton fiber. XRD suggested that the finishing process only slightly affected the cotton fiber structure and the surface morphology, elemental composition of char residues in cotton fabrics were tested by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Confirmed that FR was grafted well with slight damage to the cotton structure. When the treated cotton with 25.3% weight gain(WG) in FR, the treated cotton has self extinguishing property and passed UL-94 vertical burning V-0 classification, the limiting oxygen index (LOI) was improved from 17.0–40.5%, and the LOI can still reach 30.9% after 50 laundering cycles, the cone calorimetry(CONE) analysis indicated that the peak heat release rate (PHRR) of the treated cotton was reduced from 190.3 kW/m2 to 17.9 kW/m2, and the total heat release (THR) was reduced from 2.8 MJ/m2 to 1.8 MJ/m2, The thermogravimetric(TG) and Differential scanning calorimeter (DSC) showed that the addition of FR inhibited the initial thermal degradation temperature of the treated cotton under heating conditions, and TG showed that the initial thermal degradation temperature of treated cotton in nitrogen and air was 225.9 ℃ and 221.8 ℃, respectively, which was lower than that of untreated cotton. The mechanical properties are in the usable range, which showed that treated cotton have excellent flame retardancy, durability and good flexibility.

2021 ◽  
Author(s):  
Jinfeng Li ◽  
Wei Jiang ◽  
Maolin Liu

Abstract Phosphorus/nitrogen flame retardant ammonium three phosphoric acid glycerol ester (FR) with reactive -P-O−NH4+ groups was synthesized from glycerol, phosphoric acid and urea. At high temperature, the -P-O−NH4+ group in FR is decomposed into -P-O−H+ group. Under the action of catalyst dicyandiamide, -P-O−H+ forms phosphonic anhydride. Phosphonic anhydride can dehydrate and condense with the hydroxyl group on the 6-position carbon atom in the glucose ring of cotton fiber, forming a firm P-O-C bond, thus fixing FR molecule firmlyon cotton fiber. XRD suggested that the finishing process only slightly affected the cotton fiber structure and the surface morphology, elemental composition of char residue in cotton fabrics were tested by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). Confirmed that FR was grafted well with slight damage to the cotton structure. When the treated cotton with 25.3% weight gain(WG) in FR, the treated cotton has self extinguishing property and passed UL-94 vertical burning V-0 classification, the limiting oxygen index (LOI) was improved from 17.0–40.5%, and the LOI can still reach 30.9% after 50 laundering cycles, the cone calorimetry(CONE) analysis indicated that the peak heat release rate (PHRR) of the treated cotton was reduced from 190.3 kW/m2 to 17.9 kW/m2, and the total heat release (THR) was reduced from 2.8 MJ/m2 to 1.8 MJ/m2, The thermogravimetric(TG) and Differential scanning calorimeter (DSC) showed that the addition of FR inhibited the initial thermal degradation temperature of the treated cotton under heating conditions, and TG showed that the initial thermal degradation temperature of treated cotton in nitrogen and air was 225.9 ℃ and 221.8 ℃, respectively, which was lower than that of untreated cotton. The mechanical properties are in the usable range, which showed that treated cotton had excellent flame retardancy, durability and good flexibility.


2021 ◽  
pp. 004051752110351
Author(s):  
Zhenlin Jiang ◽  
Youxian Hu ◽  
Keyu Zhu ◽  
Yue Li ◽  
Chaosheng Wang ◽  
...  

There are many defects in the post finishing flame-retardant modification of polyester–cotton (CT) fabric, leading to shortcomings such as single function and low flame-retardant efficiency, which still need to be solved urgently. Herein, a bio-based flame-retardant and antibacterial coating consisting of phytic acid and DL-arginine was deposited on CT fabrics using layer-by-layer assembly to obtain a flame-retardant and antibacterial CT fabric. Fourier transform infrared spectroscopy confirmed that the assembled coating was successful deposited on the CT fabric. The thermogravimetric analysis revealed that the number of bilayers had no significant effect on the degradation temperature of the coated CT fabric; however, it significantly improved the charring effect of the sample, wherein the char rate of the CT fabric coated with 20 bilayers increased from 0.11 to 8.67 wt% compared with uncoated CT fabric at 700°C. In addition, the limiting oxygen index of the CT fabric coated with 20 bilayers increased to 32.0 ± 0.3%. Furthermore, the vertical results revealed that the CT fabric coated with five bilayers attained the UL-94 V-1 grade. The heat release rate (HRR) and the total heat release (THR) of the coated CT fabric were significantly decreased compared to those of the uncoated CT fabric. In particular, the HRR and THR of the CT fabric coated with five bilayers reduced by 28.97% and 30.49%, respectively. Furthermore, the coated CT fabric exhibited an obvious antibacterial effect on Staphylococcus aureus, and the inhibitory ring increased from 0 to 4.0 mm with an increase in bilayers to 20. This study describes a facile method of flame-retardant and antibacterial modification of CT fabric using biological materials.


2016 ◽  
Vol 87 (11) ◽  
pp. 1367-1376 ◽  
Author(s):  
Chaohong Dong ◽  
Zhou Lu ◽  
Peng Wang ◽  
Ping Zhu ◽  
Xuechao Li ◽  
...  

A novel formaldehyde-free flame retardant containing phosphorus and dichlorotriazine components (CTAP) for cotton fabrics was synthesized. As an active group, the dichlorotriazine could react with cotton fabric via covalent reaction. The addition of 20.7 wt% CTAP into the cotton fabric obtained a high limiting oxygen index value of 31.5%, which was 13.5% higher than the pure cotton fabric. The results of heat release rate, total heat release and effective heat combustion indicated that CTAP effectively imparted flame retardancy to cotton fabric by the cone calorimetry test. With respect to the untreated cotton fabrics, the treated cotton fabrics degraded at lower decomposition temperature and form a consistent and compact char layer, which could be observed by thermogravimetric analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. Compared to the untreated cotton fabrics, CTAP performed an effective role in flame retardancy for treated cotton fabrics. Meanwhile, it stimulated the formation of char and promoted the thermal stability of treated cotton fabrics during combustion.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Xuejun Lai ◽  
Jiedong Qiu ◽  
Hongqiang Li ◽  
Xingrong Zeng ◽  
Shuang Tang ◽  
...  

An efficient caged phosphate charring agent named PEPA was synthesized and combined with melamine pyrophosphate (MPP) to flame-retard polypropylene (PP). The effects of MPP/PEPA on the flame retardancy and thermal degradation of PP were investigated by limiting oxygen index (LOI), vertical burning test (UL-94), cone calorimetric test (CCT), and thermogravimetric analysis (TGA). It was found that PEPA showed an outstanding synergistic effect with MPP in flame retardant PP. When the content of PEPA was 13.3 wt% and MPP was 6.7 wt%, the LOI value of the flame retardant PP was 33.0% and the UL-94 test was classed as a V-0 rating. Meanwhile, the peak heat release rate (PHRR), average heat release rate (AV-HRR), and average mass loss rate (AV-MLR) of the mixture were significantly reduced. The flame-retardant and thermal degradation mechanism of MPP/PEPA was investigated by TGA, Fourier transform infrared spectroscopy (FTIR), TG-FTIR, and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDXS). It revealed that MPP/PEPA could generate the triazine oligomer and phosphorus-containing compound radicals which changed the thermal degradation behavior of PP. Meanwhile, a compact and thermostable intumescent char was formed and covered on the matrix surface to prevent PP from degrading and burning.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 550-560
Author(s):  
Huaifang Wang ◽  
Yingli Cai ◽  
Zhiming Jiang ◽  
Shengnan Guo ◽  
Ping Zhu

AbstractA phosphoramidate flame retardant (dimethyl N,N-bis(2-hydroxyletheyl)phosphoramidate, DMBHP) was synthesized and applied to cotton fabrics for enhancing the flame retardancy. The structure of DMBHP was characterized by FT-IR and NMR. The flame retardancy and combustion behavior of the treated cotton fabrics were evaluated using the vertical flammability test (VFT), limiting oxygen index (LOI), and the cone calorimetric test. Moreover, to further analyze the flame retardant action of DMBHP in cotton fabrics, thermal degradability of the treated fabrics, as well as the chemical structure, surface morphology, and element contents of the char residue of the DMBHP-treated fabrics were also evaluated. The results show that, after treating with DMBHP, the cotton fabrics acquired a LOI value from 18.1 to 31.1 with the concentration increasing to 30% and self-extinguished in VFT tests when treated with up to 15% DMBHP. Besides, the total heat release and the peak heat release rate of DMBHP (30%)-treated fabric decreased obviously compared with the pure cotton along with more residue retained. TG, SEM, and EDS results of treated cotton fabric and the corresponding residue after burning showed that DMBHP has the capability of enhancing char formation. In addition, DMBHP will confer cotton fabrics a certain durability against washing with the help of 1,2,3,4-butanetetracarboxylic acid (BTCA) and citric acid (CA).


NANO ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. 1950154 ◽  
Author(s):  
Mengmeng Zhang ◽  
Yamin Cheng ◽  
Zhiwei Li ◽  
Xiaohong Li ◽  
Laigui Yu ◽  
...  

An inorganic–organic nanohybrid flame retardant, HNT@CS@Fe3O4, is prepared by Halloysite nanotubes (HNT) as nanotemplate, chitosan (CS) as char-forming agent and ferroferric oxide (Fe3O[Formula: see text] playing in a catalytic role, aiming to endow enhanced flame-retardant performance of its nanohybrid. Results show that HNT@CS@Fe3O4 nanohybrids have a corn-like structure and can significantly improve the flame retardancy and thermal stability of epoxy resin (EP). Especially, the initial thermal degradation temperature of EP/HNT@CS@Fe3O4 is significantly improved by [Formula: see text]C relative to pure EP, and the residual carbon yield under air atmosphere is 8.8[Formula: see text]wt.%, which is significantly higher than other EP composites, indicating a higher thermal stability is offered by the as-prepared nanohybrid. The limiting oxygen index of EP/10HNT@CS@Fe3O4 is 31.3%, which is 10.2% higher than that of pure EP. Meanwhile, the HNT@CS@Fe3O4 nanofiller reduces the peak heat release rate, CO production and peak smoke production release of EP nanocomposite by 32.0%, 44.0% and 33.0% in a cone calorimeter test, respectively. This is because the HNT-based composite can form a three-dimensional network structure into the EP matrix to inhibit heat release and diffusion of flammable moieties upon burning of EP. In the meantime, the incorporated Fe3O4 nanoparticle can in situ catalyze the charring of CS and EP matrix on the surface of HNT during the combustion process, which also contributes to the significantly increased fire safety of EP.


2012 ◽  
Vol 441 ◽  
pp. 346-350 ◽  
Author(s):  
Chuan Jie Zhang ◽  
Ping Zhu ◽  
Jin Chao Zhao ◽  
Nan Nan Zhang

The combustion properties, flame retardant property, thermal degradation and component of pyrolysis products of calcium alginate fibers were investigated in this paper. The limiting oxygen index value of calcium alginate fibers was 34.4 showing no combustion in the air. The fiber extinguishes instantly when it is moved away from the fire. During the combustion process, the heat release rates (HRR), effective heat combustion (EHC) and total heat release (THR) of calcium alginate fibers were lower than those of cotton fibers, but higher than those of sodium alginate. The carbon dioxide yield rate of calcium alginate fibers was higher than that of cotton fibers but lower than that of sodium alginate. Calcium carbonate and calcium hydroxide, which are beneficial to hamper fibers combustion and diffusion of heat and oxygen, were formed during thermal degradation of calcium alginate fibers. There were 15 kinds of pyrolysis products in gas phase of calcium alginate fibers at 350°C and 45 kinds at 700 °C, while there were 26 kinds of pyrolysis products of sodium alginate at 350°C and 26 kinds at 700°C. Based on a series of study, the flame retardant mechanism of calcium alginate fibers was analyzed.


2014 ◽  
Vol 983 ◽  
pp. 190-193
Author(s):  
Cai Yun Sun ◽  
Yong Li Yang ◽  
Ming Gao

Wood has been treated with amino resins and amino resins modified with phosphoric acid to impart flame retardancy. The thermal degradation of samples has been studied by thermogravimetry (TG) in air. From the resulting data, kinetic parameters for different stages of thermal degradation are obtained following the method of Broido. For the decomposition of wood and flame retardant wood, the activation energy is found to decrease from 122 to 72 kJmol-1.


1983 ◽  
Vol 1 (2) ◽  
pp. 145-154 ◽  
Author(s):  
John V. Beninate ◽  
Brenda J. Trask ◽  
Timothy A. Calamari ◽  
George L. Drake

Durable phosphorus-based flame retardants were applied to twill fabrics con taining cotton and wool to study the effect of wool on the flame retardancy and physical properties of the blend fabrics. The presence of wool in untreated blend fabrics caused burning rates to decrease and oxygen index values to increase as wool content increased in the blends. These effects were also observed in cotton/ wool blends treated with low levels of the Thps-urea-TMM flame retardant, but were less pronounced in fabrics treated at high levels. Thermogravimetric analyses were conducted to study the thermal degradation of the treated and untreated fabrics. The presence of wool in treated blend fabrics did not sig nificantly change strength retention, area shrinkage and wrinkle recovery values in comparison to similarly treated 100% cotton fabrics.


2017 ◽  
Vol 48 (1) ◽  
pp. 87-118 ◽  
Author(s):  
MD Teli ◽  
Pintu Pandit

As far as the value addition of textile is concerned, flame retardancy of textile materials is considered to be one of the most important properties in textile finishing by both industries as well as academic researchers. Flame-retardant property with thermal stability was imparted to cotton by using green coconut ( Cocos nucifera Linn) shell extract, a natural waste source of coconut. Coconut shell extract was analyzed by high-performance liquid chromatography, Fourier transform infrared spectroscopy, energy-dispersive spectrometry and its phytochemical analysis was also carried out. The coconut shell extract (acidic after extraction) was applied in three different pH (acidic, neutral, and alkaline) conditions to the cotton fabric. Flame-retardant properties of the untreated and the treated cotton fabrics were analyzed by limiting oxygen index and vertical flammability. The study showed that all the treated fabrics had good flame resistance property compared to that of the untreated fabric. The limiting oxygen index value was found to increase by 72.2% after application of the coconut shell extract from alkaline pH. Pyrolysis and char formation behavior of the concerned fabrics were studied using thermogravimetric analysis and differential scanning calorimetric analysis in a nitrogen atmosphere. The physicochemical composition of the untreated and coconut shell extract treated cotton fabrics were analyzed by attenuated total reflection–Fourier transform infrared, scanning electron microscope, and energy-dispersive X-ray spectroscopy. Also, treated cotton fabric showed natural brown color and antibacterial property against both Gram-positive and Gram-negative bacteria. The durability of the flame-retardant functionality to washing with soap solution has also been studied and reported in this paper.


Sign in / Sign up

Export Citation Format

Share Document