scholarly journals Nutritional and Structural Role of Silicon in Attenuating Aluminum Toxicity in Sugarcane Plants

Author(s):  
Gilmar da Silveira Sousa Junior ◽  
Alexander Calero Hurtado ◽  
Jonas Pereira de Souza Junior ◽  
Renato de Mello Prado ◽  
Durvalina Maria Mathias Dos Santos

Abstract Purpose: We investigated the interactive role of Si-mediated attenuation to aluminum (Al) toxicity in two sugarcane cultivars (‘CTC9002’ and ‘CTC9003’) grown in hydroponic conditions. Methods: Two pot experiments were distributed in randomized blocks in a factorial design (4 × 2) with four replications. The treatments consisted of 0, 10, 15, and 20 mg L−1 Al (as aluminum sulfate [Al2 (SO4)3·18H2O)], which were combined with the absence and presence of Si [(2.0 mmol L−1 as potassium silicate (K2SiO3)]. Results: Both sugarcane cultivars (‘CTC9002’ and ‘CTC9003’) were affected by Al toxicity (above 10 mg L−1), resulting in nutritional disorders and decreasing plant growth, which were drastically reversed by Si addition in the growth medium. Si supplementation decrease Al concentration and translocation to the shoots of both cultivars when Al and Si were simultaneously supplied in the growth medium. We demonstrated that in shoots of both sugarcane seedlings, Si concentration are positively related to the lignin concentrations (ranging from 12.0% to 41% in cv. ‘CTC9002’ and 12% to 47% in cv. ‘CTC9003’). In addition, Si fertilization enhanced mineral nutrition and use efficiency of macros- and micronutrients, irrespective of the cultivar. Therefore, the use of cultivar ‘CTC9003’ under Si fertilization is more recommended to cope with the adverse effect caused by Al stress. Conclusions: The findings of this study suggest that Si fertilization in sugarcane seedlings is an economic and viable strategy strongly recommended to cope with the adverse effect caused by Al toxicity at concentrations less than 20 mg L−1, which lead to increase the shoot biomass production.

2005 ◽  
Vol 17 (1) ◽  
pp. 129-143 ◽  
Author(s):  
Victor Alexandre Vitorello ◽  
Flávia Regina Capaldi ◽  
Vanderlei Antonio Stefanuto

Aluminum toxicity is a major soil constraint to food and biomass production throughout the world. Considerable advances in the understanding of the mechanism of resistance involving exudation of organic acids have been made in recent years. However, despite intense research efforts, there are many aspects of Al toxicity that remain unclear. This article reviews the features of the chemistry of Al relevant to its toxicity followed by an examination of the mechanisms of toxicity and resistance. Emphasis, however, is given to the mechanisms of Al toxicity, since resistance has been covered recently by several reviews. Some topics which are specifically discussed in this review are: a) The possible role of cellular effects of low pH in Al toxicity, which has been largely ignored and needs to be addressed; b) The relevance of non-genotypic (cell-to-cell) variations in sensitivity to Al; c) Evidence indicating that although Al may well exert its toxic effects in the cell wall, it is highly unlikely that Al does so in a non-specific manner by mere exchangeable binding; and d) The hypothesis that the primary target of Al toxicity resides in the cell wall-plasma membrane-cytoskeleton (CW-PM-CSK) continuum has the potential to integrate and conciliate much of the apparently conflicting results in this field.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1938
Author(s):  
Guilherme Baggio ◽  
Elisângela Dupas ◽  
Fernando Shintate Galindo ◽  
Marcio Mahmoud Megda ◽  
Nathália Cristina Marchiori Pereira ◽  
...  

Aluminum (Al) toxicity is a major abiotic constraint for agricultural production in acidic soils that needs a sustainable solution to deal with plant tolerance. Silicon (Si) plays important roles in alleviating the harmful effects of Al in plants. The genus Urochloa includes most important grasses and hybrids, and it is currently used as pastures in the tropical regions. Xaraés palisadegrass (Urochloa brizantha cv. Xaraés) is a forage that is relatively tolerant to Al toxicity under field-grown conditions, which might be explained by the great uptake and accumulation of Si. However, studies are needed to access the benefits of Si application to alleviate Al toxicity on Xaraés palisadegrass nutritional status, production, and chemical–bromatological composition. The study was conducted under greenhouse conditions with the effect of five Si concentrations evaluated (0, 0.3, 0.6, 1.2, and 2.4 mM) as well as with nutrient solutions containing 1 mM Al in two sampling dates (two forage cuts). The following evaluations were performed: number of tillers and leaves, shoot biomass, N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, Zn, Al, and Si concentration in leaf tissue, Al and Si concentration in root tissue, neutral detergent fiber (NDF), and acid detergent fiber (ADF) content in Xaraés palisadegrass shoot. Silicon supply affected the relation between Si and Al uptake by increasing root Al concentration in detriment to Al transport to the leaves, thereby alleviating Al toxicity in Xaraés palisadegrass. The concentrations between 1.4 and 1.6 mM Si in solution decreased roots to shoots Al translocation by 259% (from 3.26 to 1.26%), which contributed to a higher number of leaves per plot and led to a greater shoot dry mass without affecting tillering. Xaraés palisadegrass could be considered one of the greatest Si accumulator plants with Si content in leaves above 4.7% of dry mass. In addition, Si supply may benefit nutrient-use efficiency with enhanced plant growth and without compromising the chemical–bromatological content of Xaraés palisadegrass.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 54
Author(s):  
Andrea Neri ◽  
Silvia Traversari ◽  
Andrea Andreucci ◽  
Alessandra Francini ◽  
Luca Sebastiani

Populus alba ‘Villafranca’ clone is well-known for its tolerance to cadmium (Cd). To determine the mechanisms of Cd tolerance of this species, wild-type (wt) plants were compared with transgenic plants over-expressing an aquaporin (aqua1, GenBank GQ918138). Plants were maintained in hydroponic conditions with Hoagland’s solution and treated with 10 µM of Cd, renewed every 5 d. The transcription levels of heavy metal transporter genes (PaHMA2, PaNRAMP1.3, PaNRAMP2, PaNRAMP3.1, PaNRAMP3.2, PaABCC9, and PaABCC13) were analyzed at 1, 7, and 60 d of treatment. Cd application did not induce visible toxicity symptoms in wt and aqua1 plants even after 2 months of treatment confirming the high tolerance of this poplar species to Cd. Most of the analyzed genes showed in wt plants a quick response in transcription at 1 d of treatment and an adaptation at 60 d. On the contrary, a lower transcriptional response was observed in aqua1 plants in concomitance with a higher Cd concentration in medial leaves. Moreover, PaHMA2 showed at 1 d an opposite trend within organs since it was up-regulated in root and stem of wt plants and in leaves of aqua1 plants. In summary, aqua1 overexpression in poplar improved Cd translocation suggesting a lower Cd sensitivity of aqua1 plants. This different response might be due to a different transcription of PaNRAMP3 genes that were more transcribed in wt line because of the importance of this gene in Cd compartmentalization.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yvonne Oelmann ◽  
Markus Lange ◽  
Sophia Leimer ◽  
Christiane Roscher ◽  
Felipe Aburto ◽  
...  

AbstractExperiments showed that biodiversity increases grassland productivity and nutrient exploitation, potentially reducing fertiliser needs. Enhancing biodiversity could improve P-use efficiency of grasslands, which is beneficial given that rock-derived P fertilisers are expected to become scarce in the future. Here, we show in a biodiversity experiment that more diverse plant communities were able to exploit P resources more completely than less diverse ones. In the agricultural grasslands that we studied, management effects either overruled or modified the driving role of plant diversity observed in the biodiversity experiment. Nevertheless, we show that greater above- (plants) and belowground (mycorrhizal fungi) biodiversity contributed to tightening the P cycle in agricultural grasslands, as reduced management intensity and the associated increased biodiversity fostered the exploitation of P resources. Our results demonstrate that promoting a high above- and belowground biodiversity has ecological (biodiversity protection) and economical (fertiliser savings) benefits. Such win-win situations for farmers and biodiversity are crucial to convince farmers of the benefits of biodiversity and thus counteract global biodiversity loss.


2021 ◽  
Vol 13 (4) ◽  
pp. 1926 ◽  
Author(s):  
Shiferaw Feleke ◽  
Steven Michael Cole ◽  
Haruna Sekabira ◽  
Rousseau Djouaka ◽  
Victor Manyong

The International Institute of Tropical Agriculture (IITA) has applied the concept of ‘circular bioeconomy’ to design solutions to address the degradation of natural resources, nutrient-depleted farming systems, hunger, and poverty in sub-Saharan Africa (SSA). Over the past decade, IITA has implemented ten circular bioeconomy focused research for development (R4D) interventions in several countries in the region. This article aims to assess the contributions of IITA’s circular bioeconomy focused innovations towards economic, social, and environmental outcomes using the outcome tracking approach, and identify areas for strengthening existing circular bioeconomy R4D interventions using the gap analysis method. Data used for the study came from secondary sources available in the public domain. Results indicate that IITA’s circular bioeconomy interventions led to ten technological innovations (bio-products) that translated into five economic, social, and environmental outcomes, including crop productivity, food security, resource use efficiency, job creation, and reduction in greenhouse gas emissions. Our gap analysis identified eight gaps leading to a portfolio of five actions needed to enhance the role of circular bioeconomy in SSA. The results showcase the utility of integrating a circular bioeconomy approach in R4D work, especially how using such an approach can lead to significant economic, social, and environmental outcomes. The evidence presented can help inform the development of a framework to guide circular bioeconomy R4D at IITA and other research institutes working in SSA. Generating a body of evidence on what works, including the institutional factors that create enabling environments for circular bioeconomy approaches to thrive, is necessary for governments and donors to support circular bioeconomy research that will help solve some of the most pressing challenges in SSA as populations grow and generate more waste, thus exacerbating a changing climate using the linear economy model.


2021 ◽  
pp. 0148558X2199265
Author(s):  
Yan-Leung Cheung ◽  
In-Mu Haw ◽  
Weiqiang Tan ◽  
Wenming Wang

Family business groups (FBGs) typically control several member firms and can hire a single auditor or multiple auditors to audit their member firms. This article examines what type of auditor appointment strategy constrains intragroup value transfers within FBGs. Analyzing related-party transactions (RPTs) within FBGs in Hong Kong, this study provides evidence that FBGs with multiple auditors undertake more intragroup value transfers than FBGs with a single auditor. However, the adverse effect of multiple-auditor appointments is mitigated by a stronger board and higher financial reporting comparability among member firms. Using an alternative measure of intragroup value transfers, we also find that the market perceives multiple-auditor appointments as impairing audit effectiveness. Overall, our findings offer the new insight that controlling families can exploit the appointment of multiple auditors as a “divide and conquer” strategy which undermines the monitoring role of auditors against intragroup value transfers, but stronger corporate governance of member firms can mitigate the adverse effect.


2005 ◽  
Vol 56 (416) ◽  
pp. 1499-1515 ◽  
Author(s):  
Stephen M. Sieger ◽  
Brian K. Kristensen ◽  
Christine A. Robson ◽  
Sasan Amirsadeghi ◽  
Edward W. Y. Eng ◽  
...  

1985 ◽  
Vol 63 (11) ◽  
pp. 1167-1175 ◽  
Author(s):  
Charles G. Suhayda ◽  
Alfred Haug

At a molar excess of [citrate]/[aluminum], this organic acid can protect calmodulin from aluminum binding if the metal is presented to the protein in stoichiometric micromolar quantities, as judged by fluorescence and circular dichroism spectroscopy. Similar citrate concentrations are also capable of fully restoring calmodulin's hydrophobic surface exposure to that of the native protein when calmodulin was initially damaged by aluminum binding. Fluoride anions are equally effective in restoring calmodulin's native structure as determined by fluorescence spectroscopy. Measurements of the kinetics of citrate-mediated aluminum removal also indicated that the metal ions are completely removed from calmodulin, consistent with results derived from atomic absorption experiments. On the other hand, results from circular dichroism studies indicated that citrate-mediated aluminum removal from calmodulin can only partially restore the α-helix content to that originally present in apocalmodulin or in calcium–calmodulin, dependent upon the absence or presence of calcium ions. The results that chelators like citrate can protect calmodulin from aluminum injury may provide a conceptual understanding of physiological observations regarding aluminum-tolerant plant species which are generally rich in certain organic acids.


2016 ◽  
Vol 16 (5) ◽  
pp. 1313-1319 ◽  
Author(s):  
Sawitree Saiyood ◽  
Duangrat Inthorn ◽  
Alisa Vangnai ◽  
Paitip Thiravetyan

The purpose of this work was to investigate the ability of Bruguiera gymnorrhiza (L.) Lamk and Pseudomonas putida BCC 23535 to remove 1,2-dichloroethane (1,2-DCA) in contaminated water under hydroponic conditions. B. gymnorrhiza (L.) Lamk is a representative mangrove plant that can tolerate high levels of 1,2-DCA with a lethal dose 50 (LD50) of 34.67 mM. A concentration of 10 mM 1,2-DCA was chosen in the present study because it had no adverse effect on the plant. Using B. gymnorrhiza (L.) Lamk alone could completely remove 1,2-DCA over four cycles of 1,2-DCA exposure. P. putida BCC 23535 alone could also remove 1,2-DCA but the efficiency was lower than B. gymnorrhiza (L.) Lamk. The combination of B. gymnorrhiza (L.) Lamk and P. putida BCC 23535 could completely remove 1,2-DCA within 6 days, which was more effective than the individual plants alone. P. putida BCC 23535 can be applied in 1,2-DCA contaminated water in groundwater which B. gymnorrhiza (L.) Lamk can be used in above ground contaminated environments. Therefore, this study suggests that both B. gymnorrhiza (L.) Lamk and P. putida BCC 23535 are alternative ways to treat 1,2-DCA in contaminated environments.


2006 ◽  
Vol 55 (1-6) ◽  
pp. 278-284 ◽  
Author(s):  
E. G. Kirby ◽  
F. Gallardo ◽  
H. Man ◽  
R. El-Khatib

Abstract In investigating the pivotal role of glutamine synthetase in woody plant development, we have strived to develop an understanding of the biochemical and physiological mechanisms whereby enhanced expression of glutamine synthetase (GS) in poplar contributes to vegetative growth through enhanced nitrogen use efficiency. Considerable effort has also centered on characterization of enhanced resistance of transgenic GS overexpressor lines to abiotic stresses and proposed mechanisms. This summary of our work also focuses on future applications in forest tree improvement.


Sign in / Sign up

Export Citation Format

Share Document