scholarly journals FAM83A-AS1 Promotes Tumor Progression Through MET Signaling in Lung Adenocarcinoma

Author(s):  
Shengbin Bai ◽  
Huijie Zhao ◽  
Xaofei Zeng ◽  
Baoyue Lin ◽  
Yinghan Wang ◽  
...  

Abstract Background Studies demonstrate that long non-coding RNAs (lncRNAs) play critical roles in the occurrence and development of cancer. However, many of the molecular mechanisms underlying lncRNAs role in this process remains unclear. Methods Here, we analyzed lncRNA expression in lung cancer tissues based on RNA-Seq analysis and found that lncRNA FAM83A-AS1 was one of the top up-regulated lncRNAs in lung adenocarcinoma and elevated expression of FAM83A-AS1 was significantly associated with poor patient survival. We validated these results using RT-PCR and an independent cohort of lung cancer. Results Functional studies indicated that knockdown of FAM83A-AS1 decreased cell proliferation, colony formation, migration and invasion in H1299 and H838 lung cancer cells. Knockdown of FAM83A-AS1 induced the autophagy and cell cycle arrest at G2. Mechanistically, we found that MET, p62 and phosphor S6K proteins were decreased upon FAM83A-AS1 knockdown. Conclusion In conclusion, FAM83A-AS1 may have potential as a diagnosis/prognosis marker and its oncogenic role could lead to potential targeting for lung cancer therapy.

Author(s):  
Zhong-xin Zhou ◽  
Zu-ping Zhang ◽  
Ze-zhang Tao ◽  
Ting-zhao Tan

Laryngeal cancer, one of the most common head and neck malignancies, is an aggressive neoplasm. Increasing evidence has demonstrated that microRNAs (miRNAs) exert important roles in oncogenesis and progression of diverse types of human cancers. miR-632, a tumor-related miRNA, has been reported to be dysregulated and implicated in human malignancies; however, its biological role in laryngeal carcinoma remains to be elucidated. The present study aimed at exploring the role of miR-632 in laryngeal cancer and clarifying the potential molecular mechanisms involved. In the current study, miR-632 was found to be significantly upregulated both in laryngeal cancer tissues and laryngeal cancer cell lines. Functional studies demonstrated that miR-632 accelerated cell proliferation and colony formation, facilitated cell migration and invasion, and enhanced the expression of cell proliferation-associated proteins, cyclin D1 and c-myc. Notably, miR-632 could directly bind to the 3′-untranslated region (3′-UTR) of glycogen synthase kinase 3β (GSK3β) to suppress its expression in laryngeal cancer cells. Mechanical studies revealed that miR-632 promoted laryngeal cancer cell proliferation, migration, and invasion through negative modulation of GSK3β. Pearson’s correlation analysis revealed that miR-632 expression was inversely correlated with GSK3β mRNA expression in laryngeal cancer tissues. Taken together, our findings suggest that miR-632 functions as an oncogene in laryngeal cancer and may be used as a novel therapeutic target for laryngeal cancer.


2018 ◽  
Vol 19 (10) ◽  
pp. 3213 ◽  
Author(s):  
Hye-Jin Sung ◽  
Jung-Mo Ahn ◽  
Yeon-Hee Yoon ◽  
Sang-Su Na ◽  
Young-Jin Choi ◽  
...  

As lung cancer shows the highest mortality in cancer-related death, serum biomarkers are demanded for lung cancer diagnosis and its treatment. To discover lung cancer protein biomarkers, secreted proteins from primary cultured lung cancer and adjacent normal tissues from patients were subjected to LC/MS–MS proteomic analysis. Quiescin sulfhydryl oxidase (QSOX1) was selected as a biomarker candidate from the enriched proteins in the secretion of lung cancer cells. QSOX1 levels were higher in 82% (51 of 62 tissues) of lung cancer tissues compared to adjacent normal tissues. Importantly, QSOX1 serum levels were significantly higher in cancer patients (p < 0.05, Area Under curve (AUC) = 0.89) when measured by multiple reaction monitoring (MRM). Higher levels of QSOX1 were also uniquely detected in lung cancer tissues, among several other solid cancers, by immunohistochemistry. QSOX1-knock-downed Lewis lung cancer (LLC) cells were less viable from oxidative stress and reduced migration and invasion. In addition, LLC mouse models with QSOX1 knock-down also proved that QSOX1 functions in promoting cancer metastasis. In conclusion, QSOX1 might be a lung cancer tissue-derived biomarker and be involved in the promotion of lung cancers, and thus can be a therapeutic target for lung cancers.


2022 ◽  
Vol 12 ◽  
Author(s):  
Sicon Mitra ◽  
Uttpal Anand ◽  
Niraj Kumar Jha ◽  
Mahipal S. Shekhawat ◽  
Suchismita Chatterjee Saha ◽  
...  

Piperine and piperidine are the two major alkaloids extracted from black pepper (Piper nigrum); piperidine is a heterocyclic moiety that has the molecular formula (CH2)5NH. Over the years, many therapeutic properties including anticancer potential of these two compounds have been observed. Piperine has therapeutic potential against cancers such as breast cancer, ovarian cancer, gastric cancer, gliomal cancer, lung cancer, oral squamous, chronic pancreatitis, prostate cancer, rectal cancer, cervical cancer, and leukemia. Whereas, piperidine acts as a potential clinical agent against cancers, such as breast cancer, prostate cancer, colon cancer, lung cancer, and ovarian cancer, when treated alone or in combination with some novel drugs. Several crucial signalling pathways essential for the establishment of cancers such as STAT-3, NF-κB, PI3k/Aκt, JNK/p38-MAPK, TGF-ß/SMAD, Smac/DIABLO, p-IκB etc., are regulated by these two phytochemicals. Both of these phytochemicals lead to inhibition of cell migration and help in cell cycle arrest to inhibit survivability of cancer cells. The current review highlights the pharmaceutical relevance of both piperine and piperidine against different types of cancers.


1997 ◽  
Vol 8 (4) ◽  
pp. 189-194 ◽  
Author(s):  
Kozo Nakanishi ◽  
Shuichi Hashizume ◽  
Masatoshi Kato ◽  
Tsutomu Honjoh ◽  
Yuko Setoguchi ◽  
...  

2020 ◽  
Author(s):  
Bin Xue ◽  
Chen-Hua Chuang ◽  
Haydn M. Prosser ◽  
Cesar Seigi Fuziwara ◽  
Claudia Chan ◽  
...  

AbstractLung adenocarcinoma, the most prevalent lung cancer subtype, is characterized by its high propensity to metastasize. Despite the importance of metastasis in lung cancer mortality, its underlying cellular and molecular mechanisms remain largely elusive. Here, we identified miR-200 miRNAs as potent suppressors for lung adenocarcinoma metastasis. miR-200 expression is specifically repressed in mouse metastatic lung adenocarcinomas, and miR-200 decrease strongly correlates with poor patient survival. Consistently, deletion of mir-200c/141 in the KrasLSL-G12D/+; Trp53flox/flox lung adenocarcinoma mouse model significantly promoted metastasis, generating a desmoplastic tumor stroma highly reminiscent of metastatic human lung cancer. miR-200 deficiency in lung cancer cells promotes the proliferation and activation of adjacent cancer-associated fibroblasts (CAFs), which in turn elevates the metastatic potential of cancer cells. miR-200 regulates the functional interaction between cancer cells and CAFs, at least in part, by targeting Notch ligand Jagged1 and Jagged2 in cancer cells and inducing Notch activation in adjacent CAFs. Hence, the interaction between cancer cells and CAFs constitutes an essential mechanism to promote metastatic potential.


2019 ◽  
Vol 41 (5) ◽  
pp. 699-710 ◽  
Author(s):  
Yan-Jin Liu ◽  
Yu-Ju Chang ◽  
Yu-Ting Kuo ◽  
Po-Huang Liang

Abstract Metastasis, the movement of cancer cells from one site to another, is responsible for the highest number of cancer deaths, especially in lung cancer patients. In this study, we first identified a prognostic marker of lung adenocarcinoma, TCP-1 β subunit (chaperonin-containing TCP-1β; CCT-β). We showed a compound that disrupted the interaction of CCT-β with β-tubulin killed a highly metastatic non-small cell lung cancer cell line CL1-5 through inducing Endoplasmic reticulum stress and caspases activation. Moreover, at the dosage of EC20, the compound inhibited migration and invasion of the lung cancer cells by suppressing matrix metalloproteinase (MMP)-2/9 and epithelial–mesenchymal transition (EMT)-related proteins through downregulating mitogen-activated protein kinases (MAPKs), Akt/β-catenin and integrin–focal adhesion kinase signaling pathways. Unlike the anticancer drugs, such as Taxol, that target the adenosine triphosphate site of β-tubulin, this study reveals a therapeutic target, β-tubulin/CCT-β complex, for metastatic human lung adenocarcinoma. The study demonstrated CCT-β as a prognostic marker. Targeting β-tubulin/CCT-β complex caused apoptosis and inhibited invasion/migration of CCT-β overexpressed, highly metastatic lung adenocarcinoma.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Gaozhong Sun ◽  
Kewei Ni

Objective. The purpose of this study was to describe the role of Cavin3 in the progression of lung cancer and its underlying mechanism. Methods. Totally, 200 cases of lung cancer tissues and corresponding paracancer tissues were collected. Cavin3 expression in samples was determined by qRT-PCR, and the correlation with lung cancer stages as well as prognosis was statistically analyzed combined with matched clinical information. To investigate the mechanism of Cavin3 in lung cancer progression, firstly, Cavin3 was detected in lung cancer cell lines A549, PC9, and H520. Then, cells with stable Cavin3 overexpression and Cavin3 knockout were established to determine the effect of Cavin3 overexpression on the mammalian target of rapamycin (mTOR) signaling pathway. Subsequently, cells were harvested for cell proliferation, migration, and invasion assays in vitro, as well as nude mouse transplantation tumor experiment in vivo. Results. Cavin3 was seen to be highly expressed in cancer tissues. Statistical analysis with matched clinical data showed that Cavin3 as a prognostic indicator of lung cancer had important clinical value. In addition, it could be found that high expression of Cavin3 was able to promote cell proliferation, migration, and invasion and also potentiate tumor formation in vivo. Conclusion. Cavin3 was highly expressed in lung cancer, and it was capable to promote cell proliferation, invasion, and migration.


2020 ◽  
Vol 10 ◽  
Author(s):  
Yingjing Wang ◽  
Muqi Shi ◽  
Nan Yang ◽  
Xiaoyu Zhou ◽  
Liqin Xu

GPR115, a member of the adhesion G protein-coupled receptor family, is dysregulated in many cancers. However, the expression and function of GRP115 in non-small cell lung cancer (NSCLC) is not clear. Here, we examined the expression pattern, clinical significance, and function of GPR115 in NSCLC by analysis of clinical specimens and human cell lines and bioinformatics analysis. Immunohistochemical analysis of clinical samples showed that GPR115 was significantly upregulated in NSCLC tissues compares with normal lung epithelial tissue (P &lt; 0.05). And GPR115 overexpression is an independent prognostic factor for 5-year overall survival of NSCLC patients [hazard ratio (HR)=1.625, P = 0.008]. Interestingly, higher expression of GPR115 was strongly correlation with differentiation level (P = 0.027), tumor size (P = 0.010), lymph node metastasis (P = 0.022), tumor-node-metastasis stage (P = 0.008), and poor prognosis of lung adenocarcinoma (LUAD, all P = 0.039), but not lung squamous cell carcinoma (LUSC, P &gt; 0.05). Moreover, downregulation of GPR115 by RNA interference in human lung cancer lines inhibited cell proliferation, migration, and invasion. Preliminary bioinformatic analysis confirmed that GPR115 was closely associated with LAMC2 (Spearman correlation coefficient=0.67, P &lt; 0.05), which was accumulated in ECM-receptor interaction and focal adhesion. Consistent with these findings, deceased of GPR115 was associated with E-cadherin, N-cadherin and Vimentin confirmed by western blot. In conclusion, these data suggest that GPR115 may play a role in the tumor growth and metastasis and may have utility as a diagnostic and prognostic marker for LUAD, but not LUSC.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2021 ◽  
Author(s):  
Chi-Chung Wang ◽  
Yuan-Ling Hsu ◽  
Chi-Jen Chang ◽  
Chia-Jen Wang ◽  
Tzu-Hung Hsiao ◽  
...  

Metastasis is a predominant cause of cancer death and the major challenge in treating lung adenocarcinoma (LADC). Therefore, exploring new metastasis-related genes and their action mechanisms may provide new insights for developing a new combative approach to treat lung cancer. Previously, our research team discovered that the expression of the inhibitor of DNA binding 4 (Id4) was inversely related to cell invasiveness in LADC cells by cDNA microarray screening. However, the functional role of Id4 and its mechanism of action in lung cancer metastasis remain unclear. In this study, we report that the expression of Id4 could attenuate cell migration and invasion in vitro and cancer metastasis in vivo. Detailed analyses indicated that Id4 could promote E-cadherin expression through the binding of Slug, cause the occurrence of mesenchymal-epithelial transition (MET), and inhibit cancer metastasis. Moreover, the examination of the gene expression database (GSE31210) also revealed that high-level expression of Id4/E-cadherin and low-level expression of Slug were associated with a better clinical outcome in LADC patients. In summary, Id4 may act as a metastatic suppressor, which could not only be used as an independent predictor but also serve as a potential therapeutic for LADC treatment.


2018 ◽  
Vol 47 (5) ◽  
pp. 2097-2108 ◽  
Author(s):  
Wanfu Men ◽  
Wenya Li ◽  
Jungang Zhao ◽  
Yu Li

Background/Aims: TNF-α receptor-associated factor (TRAF)-interacting protein with a forkhead-associated (FHA) domain (TIFA) may mediate the impact of TRAF on the development of lung cancer. The current study was conducted to investigate the expression of TIFA in lung adenocarcinoma and its potential role in the regulation of cancer cell proliferation and migration, and its influence on patient survival. Methods: Specimens of lung adenocarcinoma tissues and their adjacent normal lung tissues were obtained from 116 patients who underwent surgical resection of lung cancer. The expression of TIFA in the lung tissues was examined by immunohistochemistry, immunoblotting, and real-time RT-PCR in four different lung cancer cell lines and one normal bronchial epithelial cell line (BEAS-2B). TIFA was silenced by RNAi technique, and cell proliferation was then assessed by the CCK8 method. Furthermore, cell migration was determined by wound-healing trans-well and wound-healing migration assays. Additionally, cell-cycle arrest and apoptosis were assessed by flow cytometry analysis. Results: TIFA was positively detected in 63 (54.3%) out of 116 lung adenocarcinoma specimens, which was significantly higher than the respective rate established in normal tissues adjacent to the tumor (30.1%, p < 0.05). The overall survival rate was significantly lower in the patients with positive TIFA expression than that in the patients with negative TIFA expression (p < 0.05). TIFA was also highly expressed in the lung cancer cell lines (H1299, H1975, and HCC827) tested. It is noteworthy that siRNA suppressed the expression of TIFA, which contributed to the attenuation of cell proliferation and migration, but promoted cell-cycle arrest and apoptosis. Furthermore, the silencing of TIFA caused upregulation of p53, p21, and cleaved-caspase-3, but downregulation of Bcl-2, cyclin D1, and CDK4, as well as phosphorylation of IKKß, IκB, and p65. Conclusions: TIFA may serve as a biomarker in the prediction of lung adenocarcinoma. Furthermore, TIFA may modulate lung cancer cell survival and proliferation through regulating the synthesis of apoptosis-associated proteins.


Sign in / Sign up

Export Citation Format

Share Document