scholarly journals SIRT3 Inhibits Cholangiocarcinoma Cell Proliferation by Targeting HIF1α to regulate the EMT Signaling Pathway

Author(s):  
Yihang Zhao ◽  
Yaxian Kuai ◽  
Jianhua Xu ◽  
Yufang Cui ◽  
Juan Wu ◽  
...  

Abstract BackgroundCholangiocarcinoma (CCA), is a rare biliary adenocarcinoma associated with poor outcomes. Deacetylase Sirtuin‐3 (SIRT3), a histone deacetylase (HDAC), has been considered to be associated with various cancers and can be a potential new target for CCA.We intended to identify the target of SIRT3 and explore the mechanism of SIRT3 in CCA.MethodsThe expression levels of SIRT3 and hypoxia‐inducible factor‐1α (HIF1α) in CCA tissues and cell lines were examined by RT-qPCR. CCK-8 and EdU methods were used to detect cell proliferation in CCA. To assess the levels of proteins related to cell proliferation and epithelial-mesenchymal transition (EMT) process, western blot analysis was conducted. Co-Immunoprecipitation and deacetylation assays were used to explore HIF1α protein acetylation, stability and the relationship between SIRT3 and HIF1α in CCA cells.ResultsSIRT3 showed low expression in CCA tissues and cells. SIRT3 overexpression inhibited cell proliferation and EMT process. Moreover, the interaction between SIRT3 and HIF1α was confirmed and HIF1α expression was negatively regulated by SIRT3. Furthermore, we also found that HIF1α was more easily degraded and showed a reduction in stability through deacetylation via SIRT3 knockdown. In rescue assays, HIF1α also reversed the inhibitory effect of SIRT3 on cell proliferation and the EMT process. ConclusionsSIRT3 suppressed cell proliferation and the EMT process in CCA by targeting HIF1α.Trial registrationSamples were obtained only after the patient has given informed consent according to the established plan approved by the Ethics Committee of The First Affiliated Hospital of Anhui Medical University.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Fan He ◽  
Guoming Ding ◽  
Wu Jiang ◽  
Xiaoliang Fan ◽  
Liulong Zhu

AbstractTumor-associated macrophages (TAMs) are known to participate in osteosarcoma (OS) progression. As demonstrated in our previous research, miR-363 played a tumor inhibitory effect in OS cells via lowering the PDZ domain containing 2 (PDZD2) expression. The regulatory roles of TAMs on miR-363/PDZD2 and the internal mechanism relating to long noncoding RNA p53 upregulated regulator of P53 levels (lncRNA PURPL) are examined in this study. TAM-like macrophages were formed by inducing CD14+ peripheral blood mononuclear cells (PBMCs). The TAMs migration was detected after MG-63 cells transfected with miR-363 mimics or inhibitors. We then analyzed the regulatory activity of PURPL on miR-363 expression. We also tested the influences of PURPL overexpression/knockdown on MG-63 cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT), as well as TAMs migration. Silence in PDZD2 expression was used to confirm the effects of PURPL on MG-63 cells. We successfully induced TAM-like macrophages. MG-63 cells transfecting miR-363 mimics suppressed TAMs migration while transfecting a converse effect was seen in miR-363 inhibitor. TAMs raised PURPL expression in MG-63 cells, which was an upstream regulator of miR-363. Along with TAMs migration, PURPL overexpression promoted MG-63 cell proliferation, migration, invasion, and EMT. An opposite influence was seen due to the PURPL knockdown. The silence of PDZD2 weakened the influences of PURPL overexpression on MG-63 cells and TAMs migration. On modulating the PURPL/miR-363/PDZD2 axis, TAMs-promoted OS development might be achieved.


2018 ◽  
Vol 44 (1) ◽  
pp. 70-77
Author(s):  
Gülden Başkol ◽  
Merve Özel ◽  
Çiğdem Uçar ◽  
Büşra Nur Doğru ◽  
Esra Hilal Yüksek ◽  
...  

Abstract Background Therapeutic options for advanced cholangiocarcinoma (CCA) are limited and ineffective due to the largely incomplete understanding of the molecular pathogenesis of this deadly tumor. So that, we planned to investigate epigenetic regulation of epithelial-mesenchymal transition (EMT) in cholangiocarcinoma cell line by applying Suberoylanilide hydroxamic acid (SAHA). We studied the effect of SAHA on cell proliferation, colony forming, migration and protein level of E-cadherin (E-cad) as an epithelial EMT marker, N-cadherin (N-cad) and Vimentin (Vim), as a mesenchymal markers of EMT, in human CCA cell line. Materials and methods Cell proliferation and migration measurements were performed by flow cytometry and wound healing assay, respectively. E-cad, N-cad and Vim protein levels were determined by Western blot analysis. Results It was found that SAHA significantly inhibits cell viability, proliferation and migration of TFK-1 cells, accompanied by reversing of EMT markers. SAHA, upregulated protein level of E-cad, while downregulated the protein levels of N-cad and Vimentin. Conclusions SAHA treatment may bebeneficial for CCA patients and SAHA might be a potential therapeutic agent for the treatment of CCA. However, future studies are needed to evaluate the clinical applicability of SAHA as a part of the chemotherapeutic regimen for CCA.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xue-Mei Wan ◽  
Xue-Lei Zhou ◽  
Yong-Jun Du ◽  
Hui Shen ◽  
Zhengxia Yang ◽  
...  

Threonine aspartase 1 (TASP1) was reported to function in the development of cancer. However, the regulatory mechanism of TASP1 in gastric cancer (GC) remains unclear. In this study, we determined the expression of TASP1 in tissues of GC patients, GC cells by qRT-PCR, and western blot and assessed the relationship between TASP1 and GC cell proliferation and migration via CCK-8 and transwell assay. It was found that the expression of TASP1 in GC tissues or GC cell lines was significantly higher than that in normal adjacent tissues or normal cells. The proliferation and migration of GC cells were inhibited upon TASP1 knockdown. Mechanism investigation revealed that TASP1 promoted GC cell proliferation and migration through upregulating the p-AKT/AKT expression. TASP1 induced GC cell migration via the epithelial -mesenchymal transition (EMT) pathway. In conclusion, TASP1 promotes GC progression through the EMT and AKT/p-AKT pathway, and it may serve as a new potential biomarker and therapeutic target for GC.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Haoqi Zhao ◽  
Lan Wang ◽  
Shufang Wang ◽  
Xihua Chen ◽  
Min Liang ◽  
...  

Abstract Background Metastasis and invasion are crucial in determining the mortality of cervical carcinoma (CC) patients. The epithelial–mesenchymal transition (EMT) is now a universal explanation for the mechanisms of tumor metastasis. Α-chimeric protein (α-chimaerin, CHN1) plays an important role in the regulation of signal transduction and development. However, the molecular regulatory relationships between CHN1 and CC progression in relation to EMT have not yet been identified. Methods The expression of CHN1 in CC tissues, adjacent tissues, and lymph node metastases from CC patients was detected by immunohistochemistry. Upregulation and knockdown of CHN1 were achieved by transfection of CC cells. The effect of CHN1 on cell proliferation was determined by CCK-8 and plate clone formation assays. Changes in migration and invasion capabilities were evaluated using scratch migration and transwell invasion assays. The effect of CHN1 overexpression and interference on xenograft tumor growth was determined by tumor weight and pathological analyses. The expression of EMT-related mRNAs was measured by qRT-PCR in transfected CC cells. EMT-related proteins and Akt/GSK-3β/Snail signaling pathway-related proteins were also evaluated by western blotting. Results CHN1 was overexpressed in CC tissues and was associated with lymph node metastasis and low survival in CC patients. Overexpression of CHN1 promoted cell proliferation, migration, and invasion in CC cells. In contrast, silencing of CHN1 inhibited these phenomena. Overexpression of CHN1 promoted tumor formation in an in vivo xenograft tumor mouse model, with increased tumor volumes and weights. In addition, CHN1 induced the expression of EMT-related transcription factors, accompanied by the decreased expression of epithelial markers and increased expression of mesenchymal markers. The Akt/GSK-3β/Snail signaling pathway was activated by overexpression of CHN1 in vitro, and activation of this pathway was inhibited by the signaling pathway inhibitor LY294002. Conclusion These results suggest that CHN1 promotes the development and progression of cervical carcinoma via the Akt/GSK-3β/Snail pathway by inducing EMT.


Breast Cancer ◽  
2021 ◽  
Author(s):  
Yingzi Zhang ◽  
Jiao Tian ◽  
Chi Qu ◽  
Yang Peng ◽  
Jinwei Lei ◽  
...  

Abstract Background Recent studies have indicated that serpin peptidase inhibitor, clade A, member 3 (SERPINA3) is a potential marker associated with tumor progression, which connoted that SERPINA3 is related to malignant phenotypes in cancer. However, the biological function of SERPINA3 in breast cancer (BC) remains unclear. Methods Bioinformatics data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Immunohistochemical staining (IHC) was conducted to determine SERPINA3 expression. With strong aggressive abilities, triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, BT549 and MDA-MB-436) were obtained to examine SERPINA3 expression and functions. Wound healing and Transwell assays were performed to measure cell migration and invasion. Cell Counting Kit-8 (CCK-8) assay was conducted to detect cell proliferation abilities and cell viabilities. Results SERPINA3 was upregulated in BC tissues. Functional assays suggested that overexpression of SERPINA3 significantly promoted cell proliferation, where migration and invasion of TNBC cells were accelerated. Knockdown of SERPINA3 had the opposite effects. These results causing by overexpression of SERPINA3 were also confirmed in non-TNBC cell lines. Overexpression of SERPINA3 remarkably enhanced the epithelial–mesenchymal transition (EMT) by upregulating the EMT markers and EZH2. In addition, the overexpression of SERPINA3 reduced the sensitivity of TNBC cells to cisplatin. Conclusion SERPINA3 can regulate the migration, invasion and EMT of TNBC cells and increased expression of SERPINA3 confers resistance to cisplatin in TNBC cells. We discern it is required for the regulation of BC progression and is a critical target for the clinical treatment of BC.


2021 ◽  
Vol 38 (2) ◽  
Author(s):  
Wenqian Zheng ◽  
Jinhui Hu ◽  
Yiming Lv ◽  
Bingjun Bai ◽  
Lina Shan ◽  
...  

AbstractThe use of the anthelmintic drug pyrvinium pamoate (PP) in cancer therapy has been extensively investigated in the last decade. PP has been shown to have an inhibitory effect in colorectal cancer (CRC), but the underlying mechanism remains elusive. We aimed to investigate the antitumor activity and mechanisms of PP in CRC. In the present study, we used CCK-8 assays, colony formation assays, and western blotting to reveal that PP effectively suppressed CRC cell proliferation and the AKT-dependent signaling pathway in a concentration-dependent and time-dependent manner. Flow cytometric analysis and fluorescence microscopy demonstrated that PP increased intracellular reactive oxygen species (ROS) accumulation. We found that the inhibitory effect of PP on cell proliferation and AKT protein expression induced by PP could be partially reversed by N-acetyl-l-cysteine (NAC), an ROS scavenger. In addition, the results also demonstrated that PP inhibited cell migration by modulating epithelial-to-mesenchymal transition (EMT)-related proteins, including E-cadherin and vimentin. In conclusion, our data suggested that PP effectively inhibited cell proliferation through the ROS-mediated AKT-dependent signaling pathway in CRC, further providing evidence for the use of PP as an antitumor agent.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 921-931
Author(s):  
Juan Zhao ◽  
Xue-Bin Zeng ◽  
Hong-Yan Zhang ◽  
Jie-Wei Xiang ◽  
Yu-Song Liu

AbstractLong non-coding RNA forkhead box D2 adjacent opposite strand RNA 1 (FOXD2-AS1) has emerged as a potential oncogene in several tumors. However, its biological function and potential regulatory mechanism in glioma have not been fully investigated to date. In the present study, RT-qPCR was conducted to detect the levels of FOXD2-AS1 and microRNA (miR)-506-5p, and western blot assays were performed to measure the expression of CDK2, cyclinE1, P21, matrix metalloproteinase (MMP)7, MMP9, N-cadherin, E-cadherin and vimentin in glioma cells. A luciferase reporter assay was performed to verify the direct targeting of miR-506-5p by FOXD2-AS1. Subsequently, cell viability was analyzed using the CCK-8 assay. Cell migration and invasion were analyzed using Transwell and wound healing assays, respectively. The results demonstrated that FOXD2-AS1 was significantly overexpressed in glioma cells, particularly in U251 cells. Knockdown of FOXD2-AS1 in glioma cells significantly inhibited cell proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) and regulated the expression of CDK2, cyclinE1, P21, MMP7 and MMP9. Next, a possible mechanism for these results was explored, and it was observed that FOXD2-AS1 binds to and negatively regulates miR-506-5p, which is known to be a tumor-suppressor gene in certain human cancer types. Furthermore, overexpression of miR-506-5p significantly inhibited cell proliferation, migration, invasion and EMT, and these effects could be reversed by transfecting FOXD2-AS1 into the cells. In conclusion, our data suggested that FOXD2-AS1 contributed to glioma proliferation, metastasis and EMT via competitively binding to miR-506-5p. FOXD2-AS1 may be a promising target for therapy in patients with glioma.


2019 ◽  
Vol 5 (4) ◽  
pp. 53 ◽  
Author(s):  
Xiao ◽  
Humphries ◽  
Yang ◽  
Wang

MicroRNAs (miRNAs) are endogenous non-coding small RNAs that downregulate target gene expression by imperfect base-pairing with the 3′ untranslated regions (3′UTRs) of target gene mRNAs. MiRNAs play important roles in regulating cancer cell proliferation, stemness maintenance, tumorigenesis, cancer metastasis, and cancer therapeutic resistance. While studies have shown that dysregulation of miRNA-205-5p (miR-205) expression is controversial in different types of human cancers, it is generally observed that miR-205-5p expression level is downregulated in breast cancer and that miR-205-5p exhibits a tumor suppressive function in breast cancer. This review focuses on the role of miR-205-5p dysregulation in different subtypes of breast cancer, with discussions on the effects of miR-205-5p on breast cancer cell proliferation, epithelial–mesenchymal transition (EMT), metastasis, stemness and therapy-resistance, as well as genetic and epigenetic mechanisms that regulate miR-205-5p expression in breast cancer. In addition, the potential diagnostic and therapeutic value of miR-205-5p in breast cancer is also discussed. A comprehensive list of validated miR-205-5p direct targets is presented. It is concluded that miR-205-5p is an important tumor suppressive miRNA capable of inhibiting the growth and metastasis of human breast cancer, especially triple negative breast cancer. MiR-205-5p might be both a potential diagnostic biomarker and a therapeutic target for metastatic breast cancer.


Sign in / Sign up

Export Citation Format

Share Document