scholarly journals Fabrication of GO/PAN Nanofiber Membrane Grafted With Chitosan As Efficient Adsorbent For Dye Removal

Author(s):  
Yanran Lu ◽  
Wen Zhang ◽  
Mei Wang ◽  
Hua Zhang ◽  
Jiahui Li ◽  
...  

Abstract The adsorption is widely used to remove dyes from wastewater because of its low cost, simple preparation, and environmental friendliness. However, the existing adsorbents suffer from difficult recycling, inconvenient use, and low regeneration rate. In this study, polyacrylonitrile (PAN) and graphene oxide (GO) was mixed for electrospinning GO/PAN nanofiber membrane and then chitosan (CS) was grafted to obtain CS-GO/PAN nanofiber membrane. CS-GO/PAN membrane were characterized with FE-SEM, EDX, FT-IR and, WCA. The effects of membrane types, dosage, solution pH on the removal of dye sunset yellow (SY) were systematically investigated. The results showed that more than 80% of SY were removed within 15 min at pH 2 using 100 mg CS-GO/PAN membrane. Adsorption kinetic data were fitted well with the pseudo-second-order model and adsorption equilibrium achieved within 240 min. The isotherm study followed the Langmuir model with the actual maximum adsorption capacity of 211.54 mg/g. After 5 adsorption-desorption cycles, the adsorption efficiency and the desorption efficiency of CS-GO/PAN were over 90% and 93%, respectively. Moreover, the membrane recovered easily from the water while its integrity was still maintained. The CS-GO/PAN membrane demonstrates the virtue of high adsorption capacity, easy operation, and good reusability, which could be considered as a promising material for adsorbing dyes in wastewater.

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3718
Author(s):  
Mohammad Azam ◽  
Saikh Mohammad Wabaidur ◽  
Mohammad Rizwan Khan ◽  
Saud I. Al-Resayes ◽  
Mohammad Shahidul Islam

The aim of the research was to prepare low-cost adsorbents, including raw date pits and chemically treated date pits, and to apply these materials to investigate the adsorption behavior of Cr(III) and Cd(II) ions from wastewater. The prepared materials were characterized using SEM, FT-IR and BET surface analysis techniques for investigating the surface morphology, particle size, pore size and surface functionalities of the materials. A series of adsorption processes was conducted in a batch system and optimized by investigating various parameters such as solution pH, contact time, initial metal concentrations and adsorbent dosage. The optimum pH for achieving maximum adsorption capacity was found to be approximately 7.8. The determination of metal ions was conducted using atomic adsorption spectrometry. The experimental results were fitted using isotherm Langmuir and Freundlich equations, and maximum monolayer adsorption capacities for Cr(III) and Cd(II) at 323 K were 1428.5 and 1302.0 mg/g (treated majdool date pits adsorbent) and 1228.5 and 1182.0 mg/g (treated sagai date pits adsorbent), respectively. It was found that the adsorption capacity of H2O2-treated date pits was higher than that of untreated DP. Recovery studies showed maximal metal elution with 0.1 M HCl for all the adsorbents. An 83.3–88.2% and 81.8–86.8% drop in Cr(III) and Cd(II) adsorption, respectively, were found after the five regeneration cycles. The results showed that the Langmuir model gave slightly better results than the Freundlich model for the untreated and treated date pits. Hence, the results demonstrated that the prepared materials could be a low-cost and eco-friendly choice for the remediation of Cr(III) and Cd(II) contaminants from an aqueous solution.


2018 ◽  
Vol 36 (5-6) ◽  
pp. 1310-1330 ◽  
Author(s):  
Youzhou Zhou ◽  
Liuqin Ge ◽  
Neng Fan ◽  
Meisheng Xia

Two novel adsorbents derived from shrimp shell were prepared and their adsorption performances on Congo red were investigated. The results suggested that treated shrimp shell powder exhibited a higher adsorption capacity than raw shrimp shell powder. The factors of initial concentration, solution pH, adsorption time, and temperature were investigated. The maximum adsorption capacity of treated shrimp shell powder calculated according to the Langmuir isotherm model was 288.2 mg/g, which is much higher than that of chitin. The adsorption behavior could be fitted well by the pseudo-second-order kinetic model. Intra-particle diffusion model was also used to study the adsorption process. The thermodynamic parameters indicated the spontaneous and endothermic nature of the adsorption. Shrimp shell powder exhibited enough advantages such as large adsorption capacity, low cost, simple processing methods and high specific gravity compared with chitin or chitosan. This work confirmed that the shrimp shell biosorbent had a potential to be applied in dye wastewater treatment area.


2013 ◽  
Vol 773 ◽  
pp. 889-892 ◽  
Author(s):  
Yuan Peng ◽  
Hong Yan Xiao ◽  
Xian Zhong Cheng ◽  
Hong Mei Chen

The use of low-cost and eco-friendly adsorbents has been investigated as an ideal alternative to the currentexpensive methods of removing arsenic from wastewater. Orange peel was collected from the local fields of orangetrees and converted into a low-cost adsorbent. The effects of solution pH, contact time, and concentration of orange peel have beenstudied. The maximum adsorption capacity calculated from the Langmuirisotherm model was 43.69 mg g-1,Based on the adsorption capacity, the pretreating orange peel was shown to be promising materials for adsorption removal ofarsenics from aqueous solutions.


J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 193-205
Author(s):  
Opeyemi A. Oyewo ◽  
Sam Ramaila ◽  
Lydia Mavuru ◽  
Taile Leswifi ◽  
Maurice S. Onyango

The presence of toxic metals in surface and natural waters, even at trace levels, poses a great danger to humans and the ecosystem. Although the combination of adsorption and coagulation techniques has the potential to eradicate this problem, the use of inappropriate media remains a major drawback. This study reports on the application of NaNO2/NaHCO3 modified sawdust-based cellulose nanocrystals (MCNC) as both coagulant and adsorbent for the removal of Cu, Fe and Pb from aqueous solution. The surface modified coagulants, prepared by electrostatic interactions, were characterized using Fourier transform infrared, X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive spectrometry (SEM/EDS). The amount of coagulated/adsorbed trace metals was then analysed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). SEM analysis revealed the patchy and distributed floccules on Fe-flocs, which was an indication of multiple mechanisms responsible for Fe removal onto MCNC. A shift in the peak position attributed to C2H192N64O16 from 2θ = 30 to 24.5° occurred in the XRD pattern of both Pb- and Cu-flocs. Different process variables, including initial metal ions concentration (10–200 mg/L), solution pH (2–10), and temperature (25–45 °C) were studied in order to investigate how they affect the reaction process. Both Cu and Pb adsorption followed the Langmuir isotherm with a maximum adsorption capacity of 111.1 and 2.82 mg/g, respectively, whereas the adsorption of Fe was suggestive of a multilayer adsorption process; however, Fe Langmuir maximum adsorption capacity was found to be 81.96 mg/g. The sequence of trace metals removal followed the order: Cu > Fe > Pb. The utilization of this product in different water matrices is an effective way to establish their robustness.


2020 ◽  
Vol 11 (4) ◽  
pp. 11891-11904

In the present study, batch mode adsorption was carried out to investigate the adsorption capacity of dried bael flowers (Aegle marmelos) for the adsorptive removal of Cu(II) ions from aqueous solutions by varying agitation time, initial metal concentration, the dose of adsorbent, temperature, and initial pH of the Cu(II) ion solution. The percentage removal of 98.7% was observed at 50 ppm initial metal ion concentration, 0.5 g/100.00 cm3 adsorbent dosage, within the contact time of 120 minutes at 30 ºC in the pH range of 4 – 7. The sorption processes of Cu(II) ions was best described by pseudo-second-order kinetics. Langmuir isotherm had a good fit with the experimental data with 0.97 of correlation coefficient (R2), and the maximum adsorption capacity obtained was 23.14 mg g-1 at 30 ºC. The results obtained from sorption thermodynamic studies suggested that the adsorption process is exothermic and spontaneous. SEM analysis showed tubular voids on the adsorbent. FTIR studies indicated the presence of functional groups like hydroxyl, –C-O, –C=O, and amide groups in the adsorbent, which can probably involve in metal ion adsorption. Therefore, dried bael flowers can be considered an effective low-cost adsorbent for treating Cu(II) ions.


Author(s):  
Lorena Alcaraz ◽  
María Esther Escudero ◽  
Francisco J. Alguacil ◽  
Irene Llorente ◽  
Ana Urbieta ◽  
...  

This paper describes the physico-chemical study of the adsorption of dysprosium (Dy3+) in aqueous solution onto two types of activated carbons synthesized from spent coffee ground. KOH activated carbon is a microporous material with a specific BET surface area of 2330 m2·g-1 and pores with a diameter of 3.2 nm. Carbon activated with water vapor and N2 is a solid mesoporous, with pores of 5.7 nm in diameter and a specific surface of 982 m2·g-1. A significant dependence of the adsorption capacity on the solution pH was found, while it does not depend significantly neither on the dysprosium concentration nor on the temperature. A maximum adsorption capacity of 31.26 mg·g-1 and 33.52 mg·g-1 for the chemically and physically activated carbons, respectively, were found. In both cases, the results obtained from adsorption isotherms and kinetic study were better fit to a Langmuir model and a pseudo-second-order kinetics. In addition, thermodynamic results indicate that dysprosium adsorption onto both activated carbons is an exothermic, spontaneous and favorable process.


Author(s):  
Nguyen Thi Minh Tam ◽  
Yunguo Liu ◽  
Hassan Bashir ◽  
Zhihong Yin ◽  
Yuan He ◽  
...  

Porous graphitic biochar was synthesized by one-step treatment biomass using potassium ferrate (K2FeO4) as activator for both carbonization and graphitization processes. The modified biochar (Fe@BC) was applied for the removal of diclofenac sodium (DCF) in an aqueous solution. The as-prepared material possesses a well-developed micro/mesoporous and graphitic structure, which can strengthen its adsorption capacity towards DCF. The experimental results indicated that the maximum adsorption capacity (qmax) of Fe@BC for DCF obtained from Langmuir isotherm simulation was 123.45 mg·L−1 and it was a remarkable value of DCF adsorption in comparison with that of other biomass-based adsorbents previously reported. Thermodynamic quality and effect of ionic strength studies demonstrated that the adsorption was a endothermic process, and higher environmental temperatures may be more favorable for the uptake of DCF onto Fe@BC surface; however, the presence of NaCl in the solution slightly obstructed DCF adsorption. Adsorption capacity was found to be decreased with the increase of solution pH. Additionally, the possible mechanism of the DCF adsorption process on Fe@BC may involve chemical adsorption with the presence of H-bonding and π–π interaction. With high adsorption capacity and reusability, Fe@BC was found to be a promising absorbent for DCF removal from water as well as for water purification applications.


2012 ◽  
Vol 164 ◽  
pp. 297-301 ◽  
Author(s):  
Wei Fang Dong ◽  
Li Hua Zang ◽  
Qing Chao Gong ◽  
Cun Cun Chen ◽  
Cai Hong Zheng ◽  
...  

Low cost carbonaceous materials were evaluated for their ability to remove phenol from wastewater. The effects of adsorbents dosage, contact time and maximum adsorption capacity were investigated for granular activated carbon, powdered activated carbon, petroleum coke and multi-walled carbon nanotube (MWNT). Equilibrium studies were conducted in 50mg/L initial phenol concentration, solution pH of 5 and at temperature of 23°C. The results showed the adsorption process was fast and it reached equilibrium in 3 h. Petroleum coke and MWNT had poor adsorption which could reach the removal efficiency of phenol with 43.18% and 36.64% respectively. The granular activated carbon possessed good adsorption ability to phenol with 96.40% at the optimum dosage 5g and optimum time 90min.The powdered activated carbon was an effective adsorbent with a maximum adsorption capacity of 42.32 mg/g.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1630
Author(s):  
Vesna Marjanovic ◽  
Aleksandra Peric-Grujic ◽  
Mirjana Ristic ◽  
Aleksandar Marinkovic ◽  
Radmila Markovic ◽  
...  

Hybrid adsorbent, based on the cross-linked copolymer impregnated with hydrous iron oxide, was applied for the first time for Se(VI) adsorption from water. The influence of the initial solution pH, selenate concentration and contact time to adsorption capacity was investigated. Adsorbent regeneration was explored using a full factorial experimental design in order to optimize the volume, initial pH value and concentration of the applied NaCl solution as a reagent. Equilibrium state was described using the Langmuir model, while kinetics fitted the pseudo-first order. The maximum adsorption capacity was found to be 28.8 mg/g. Desorption efficiency increased up to 70%, and became statistically significant with the reagent concentration and pH increase, while the applied solution volume was found to be insignificant in the investigated range. Based on the results obtained, pH influence to the adsorption capacity, desorption efficiency, Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analysis of loaded adsorbent, it was concluded that the outer- and inner-sphere complexation are mechanisms responsible for Se(VI) separation from water. In addition to the experiments with synthetic solutions, the adsorbent performances in drinking water samples were explored, showing the purification efficiency up to 25%, depending on the initial Se(VI) concentration and water pH. Determined sorption capacity of the cross-linked copolymer impregnated with hydrous iron oxide and its ability for regeneration, candidate this material for further research, as a promising anionic species sorbent.


2019 ◽  
Vol 79 (8) ◽  
pp. 1561-1570
Author(s):  
Wei Chen ◽  
Fengting Chen ◽  
Bin Ji ◽  
Lin Zhu ◽  
Hongjiao Song

Abstract The adsorption behavior and the underlying mechanism of methylene blue (MB) sorption on biochars prepared from different feedstocks at 500 °C were evaluated. The biochar feedstocks included Magnolia grandiflora Linn. leaves biochar (MBC), pomelo (Citrus grandis) peel biochar (PBC) and badam shell biochar (BBC). The results of characterizing and analyzing the samples showed that different biochars had different effects on the adsorption of MB. It could be found that MBC had the best adsorption effect on MB due to its largest average pore diameter of 5.55 nm determined by Brunauer-Emmett-Teller analysis. Under the optimal conditions, the maximum adsorption capacities of BBC, PBC and MBC were 29.7, 85.15 and 99.3 mg/g, respectively. The results showed that the amount of adsorption was affected by the pH value. The maximum adsorption capacity of MBC was 46.99 mg/g when it was at pH of 3, whereas for the same experimental conditions the maximum adsorption capacity of BBC and PBC was 25.29 mg/g at pH of 11 and 36.08 mg/g at pH of 7, respectively. Therefore, MBC was found to be a most efficient low-cost adsorbentl for dye wastewater treatment compared with BBC and PBC, and it had the best removal effect under acidic conditions.


Sign in / Sign up

Export Citation Format

Share Document