scholarly journals Leaf Tissue Nutrient Sufficiency Ranges of Four Heuchera Cultivars by Chronological Age

HortScience ◽  
2019 ◽  
Vol 54 (10) ◽  
pp. 1751-1756
Author(s):  
W. Garrett Owen

Coral bells (Heuchera sp.) are popular herbaceous perennials grown for their colorful foliage and venation and their aesthetic appeal in mixed containers and landscapes. Commercial coral bell production requires greenhouse or nursery growers to optimize production inputs such as managing mineral nutrition, thereby maximizing plant growth potential and foliage color. The objective of this study was to determine the optimum fertilizer concentrations, identify leaf tissue nutrient sufficiency ranges by chronological age, and to expand leaf tissue nutrient standards of coral bells grown in soilless substrates during container production. Coral bells (H. hybrida ‘Black Beauty’, ‘Cherry Cola’, ‘Marmalade’, and ‘Peppermint Spice’), varying in leaf color, were grown under one of six constant liquid fertilizer concentrations [50, 75, 100, 200, 300, or 400 mg·L−1 nitrogen (N)] with a constant level of water-soluble micronutrient blend in a greenhouse. Fertilizer concentrations for optimal plant growth and development were determined by analyzing plant height, diameter, growth index, and total dry mass, and were found to be 50 to 75 mg·L−1 N after a nine-week crop cycle. Recently mature leaf tissue samples were collected and analyzed for elemental content of 11 nutrients at 3, 6, and 9 weeks after transplant (WAT) from plants fertilized with 50 to 75 mg·L−1 N. The black- (‘Black Beauty’) and red- (‘Cherry Cola’) colored-leaved cultivars contained higher total N, phosphorus (P), potassium (K), calcium (Ca), sulfur (S), zinc (Zn), and boron (B) than the orange- (‘Marmalade’) and green- (‘Peppermint Spice’) colored-leaved cultivars. For instance, in mature growth, total N concentration for ‘Black Beauty’ and ‘Cherry Cola’ ranged between 3.45 to 3.63% and 3.92% to 4.18% N, respectively, whereas for ‘Marmalade’ and ‘Peppermint Spice’, ranges were between 2.98% to 3.25% and 2.78% to 3.23% N, respectively. Optimal leaf tissue concentration sufficiency ranges determined in this scientifically based study were narrower and often times higher than previously reported survey values for coral bells.

HortScience ◽  
2019 ◽  
Vol 54 (3) ◽  
pp. 463-469
Author(s):  
William Garrett Owen

Perennial hibiscus (Hibiscus sp.) are popular summer-flowering plants that are grown in greenhouses or nurseries, where growers must optimize production inputs such as fertility to maximize plant growth and produce high-quality flowering crops. The objective of this study was to determine the optimum fertilizer concentrations, identify leaf tissue nutrient sufficiency ranges by chronological age, and to expand leaf tissue nutrient standards of Hibiscus hybrid L. (hibiscus) grown in soilless substrates during container production. Two cultivars of hibiscus (H. hybrid L. ‘Mocha Moon’ and ‘Starry Starry Night’) were grown under one of six constant liquid fertilizer concentrations [50, 75, 100, 200, 300, or 400 mg·L−1 nitrogen (N)] with a constant level of water-soluble micronutrient blend in a greenhouse. The fertilizer concentrations sufficient for optimal plant growth and development were determined by analyzing plant height, diameter, growth index (GI), primary shoot caliper (PSC), and total dry mass, and they were found to be 100–300 mg·L−1 N after an 8-week crop cycle. Recently, mature leaf tissue samples were collected and analyzed for elemental content of 12 nutrients at 2, 4, 6, and 8 weeks after transplant (WAT) from plants fertilized with 100–300 mg·L−1 N. An overall trend of increasing sufficient tissue concentration over time was observed for total N, phosphorus (P), calcium (Ca), sulfur (S), zinc (Zn), copper (Cu), and boron (B), whereas a decreasing trend was observed for potassium (K), iron (Fe), manganese (Mn), and aluminum (Al). For instance, at 2 WAT, total N ranged from 3.1% to 5.1% N and increased to a range of 4.2% to 4.7% N at 8 WAT. At 2 WAT, Fe and Mn ranged from 79.2 to 103.6 mg·L−1 Fe and 66.3–82.8 mg·L−1 Mn and decreased to ranges of 75.6–82.9 mg·L−1 Fe and 18.1–99.7 mg·L−1 Mn at 8 WAT, respectively. Optimal leaf tissue concentration sufficiency ranges determined in this scientifically-based study were narrower than previously reported survey values for the genera Hibiscus.


HortScience ◽  
2020 ◽  
Vol 55 (8) ◽  
pp. 1303-1307
Author(s):  
W. Garrett Owen

The objective of this study was to determine optimum fertilizer concentrations, identify leaf tissue nutrient sufficiency ranges by chronological age, and establish leaf tissue nutrient standards of containerized Russian sage (Perovskia sp.). Common Russian sage (P. atriplicifolia Benth.) and ‘Crazy Blue’ Russian sage were greenhouse-grown in a soilless substrate under one of six constant liquid fertilizer concentrations [50, 75, 100, 200, 300, or 400 mg·L−1 nitrogen (N)] with a constant level of a water-soluble micronutrient blend. Fertilizer concentrations sufficient for optimal plant growth and development were determined by analyzing plant height, diameter, growth index, primary shoot caliper, axillary shoot number, and total dry mass; they were found to be 100 to 200 mg·L−1 N after a 6-week crop cycle. Recently, mature leaf tissue samples were collected from plants fertilized with 100 to 200 mg·L−1 N and analyzed for elemental contents of 11 nutrients at 2, 4, and 6 weeks after transplant (WAT). An overall trend of increasing foliar nutrient concentrations over time was observed for all elemental nutrients. For instance, at 2 WAT, the total N concentrations of common Russian sage and ‘Crazy Blue’ Russian sage ranged between 3.68% and 5.10% and between 3.92% and 5.12%, respectively, and increased to ranges of 5.94% to 5.98% and 5.20% to 5.86% at 6 WAT, respectively. Before this study, no leaf tissue concentration standards have been reported; therefore, this study established leaf tissue concentration sufficiency ranges for the trialed Perovskia selections.


1993 ◽  
Vol 71 (4) ◽  
pp. 541-550 ◽  
Author(s):  
G. N. M. Kumar ◽  
N. Richard Knowles

Studies were conducted to further characterize a role for auxin in the loss of apical dominance and plant growth potential that occurs during long-term storage of potato (Solanum tuberosum L.) seed tubers. Treatment of single-eye seed cores from 18-month-old seed tubers with 1-naphthaleneacetic acid (NAA) restored apical dominance and increased dry matter partitioning to roots, stems, and leaves, thus partially mitigating the deleterious effects of advanced seed-tuber age on growth potential. Conversely, NAA treatment of seed cores from 6-month-old tubers substantially inhibited plant growth. In contrast to NAA, IAA was totally ineffective at counteracting the deleterious effects of advanced tuber age on plant growth, whereas the effect of IAA on overall growth of plants from 6-month-old seed cores remained slightly inhibitory. The difference in efficacy of these two auxins appears to be related to age-induced differences in ability of tissues to transport and catabolize IAA. The specific activity of IAA oxidase (IAAox) was 4 times higher in tissue from 20-month-old seed tubers at planting and increased at a faster rate during sprouting compared with that from 8-month-old tubers. Hence, the higher potential for oxidation of IAA in tissue from older seed cores is well correlated with the inability of this auxin to alter growth. In translocation studies, etiolated sprouts from aged seed tubers showed a reduced ability to translocate [1-14C]IAA basipetally compared with those from younger tubers. Moreover, intact etiolated sprouts growing from older seed cores decarboxylated the radiolabeled IAA at a much faster rate on a dry weight basis than those from younger seed cores. The specific activities of IAAox and peroxidase in the sprout apex, sprout base, and tuber tissue from 18-month-old seed cores were substantially higher than in similar tissues from 6-month-old seed cores, and tissue concentration of the radiolabel was negatively correlated with IAAox activity. Hence, aging of potato seed tubers not only reduces the ability of sprouts to transport auxin basipetally, but it also increases the capacity for auxin catabolism during sprouting. The physiological consequence of this may be the release of lateral meristems from correlative inhibition, and in effect, reduced apical dominance and shoot growth potential during plant establishment from aged seed tubers. Key words: potato, age-reduced vigor, sprouting, apical dominance, auxin.


HortScience ◽  
2006 ◽  
Vol 41 (1) ◽  
pp. 231-234
Author(s):  
Erin E. Gamrod ◽  
Holly L. Scoggins

Grown as an annual in most of the United States, Strobilanthes dyerianus Mast. has become increasingly popular in summer landscapes partially due to its superior performance in hot and humid conditions. At present, there is no published research on the nutritional requirements of S. dyerianus. Our study examined growth and foliar elemental response to different levels of fertilizer. Rooted cuttings were transplanted and grown with 0, 100, 200, 300, and 400 mg·L–1 N from 5N–2.2 P–12.4 K fertilizer as constant liquid feed. Plants were irrigated whenever the volumetric water content of the substrate was <20% as determined with a Theta Probe moisture meter. Weekly pH and electrical conductivity (EC) were monitored using the pour through method. Eight weeks after initiation of treatment, dry weight and leaf area was measured. Recently mature leaf tissue was analyzed for total N, P, K, Ca, Mg, S, Fe, Mn, B, Cu, Zn, and Mo. There were no significant differences in plant quality under the 100, 200, 300, or 400 mg·L–1 N treatments. The largest plants, based on leaf area and shoot dry weight, were produced with 200 mg·L–1 N. Compared to recommended EC levels for bedding plants, the treatments receiving 300 and 400 mg·L–1 N had excessively high levels of substrate soluble salts though overall plant quality was not reduced. The increase in fertilizer concentration yielded a linear increase in tissue concentration of N, P, and K and a linear decrease in tissue concentration of Ca and Mg.


2006 ◽  
Vol 86 (3) ◽  
pp. 817-820 ◽  
Author(s):  
E. Svendsen ◽  
K. K. Tanino

The effect of container size on the growth and survival of herbaceous perennials (Artemesia, Lamium, Thymus, Echinacea Monarda, Gentiana, Penstemon, Stachys) overwintered over two seasons at two commercial nurseries was evaluated. Results indicate: (1) For most species, container size does not affect survival; (2) Container size was a significant factor in plant growth and in almost all cases, a larger container resulted in a larger plant compared with a smaller container. Plug-grown perennials may be fall planted in their final container size to maximize growth potential by the following spring. Key words: Low temperature, overwintering, storage, perennial plants


Author(s):  
Wen ◽  
Wu ◽  
Yang ◽  
Jiang ◽  
Zhong

Nutrients released from sediments have a significant influence on the water quality in eutrophic lakes and reservoirs. To clarify the internal nutrient load and provide reference for eutrophication control in Yuqiao Reservoir, a drinking water source reservoir in China, pore water profiles and sediment core incubation experiments were conducted. The nutrients in the water (soluble reactive P (SRP), nitrate-N (NO3−-N), nitrite-N (NO2−-N), and ammonium-N (NH4+-N)) and in the sediments (total N (TN), total P (TP) and total organic carbon (TOC)) were quantified. The results show that NH4+-N was the main component of inorganic N in the pore water. NH4+-N and SRP were higher in the pore water than in the overlying water, and the concentration gradient indicated a diffusion potential from the sediment to the overlying water. The NH4+-N, NO3−-N, and SRP fluxes showed significant differences amongst the seasons. The NH4+-N and SRP fluxes were significantly higher in the summer than in other seasons, while NO3−-N was higher in the autumn. The sediment generally acted as a source of NH4+-N and SRP and as a sink for NO3−-N and NO2−-N. The sediments release 1133.15 and 92.46 tons of N and P, respectively, to the overlying water each year.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1026 ◽  
Author(s):  
Laís G. Fregolente ◽  
João Vitor dos Santos ◽  
Giovanni Vinci ◽  
Alessandro Piccolo ◽  
Altair B. Moreira ◽  
...  

Hydrochar is a carbon-based material that can be used as soil amendment. Since the physical-chemical properties of hydrochar are mainly assigned to process parameters, we aimed at evaluating the organic fraction of different hydrochars through 13C-NMR and off-line TMAH-GC/MS. Four hydrochars produced with sugarcane bagasse, vinasse and sulfuric or phosphoric acids were analyzed to elucidate the main molecular features. Germination and initial growth of maize seedlings were assessed using hydrochar water-soluble fraction to evaluate their potential use as growth promoters. The hydrochars prepared with phosphoric acid showed larger amounts of bioavailable lignin-derived structures. Although no differences were shown about the percentage of maize seeds germination, the hydrochar produced with phosphoric acid promoted a better seedling growth. For this sample, the greatest relative percentage of benzene derivatives and phenolic compounds were associated to hormone-like effects, responsible for stimulating shoot and root elongation. The reactions parameters proved to be determinant for the organic composition of hydrochar, exerting a strict influence on molecular features and plant growth response.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 713
Author(s):  
Muna Ali Abdalla ◽  
Fengjie Li ◽  
Arlette Wenzel-Storjohann ◽  
Saad Sulieman ◽  
Deniz Tasdemir ◽  
...  

The main objective of the present study was to assess the effects of sulfur (S) nutrition on plant growth, overall quality, secondary metabolites, and antibacterial and radical scavenging activities of hydroponically grown lettuce cultivars. Three lettuce cultivars, namely, Pazmanea RZ (green butterhead, V1), Hawking RZ (green multi-leaf lettuce, V2), and Barlach RZ (red multi-leaf, V3) were subjected to two S-treatments in the form of magnesium sulfate (+S) or magnesium chloride (−S). Significant differences were observed under −S treatments, especially among V1 and V2 lettuce cultivars. These responses were reflected in the yield, levels of macro- and micro-nutrients, water-soluble sugars, and free inorganic anions. In comparison with the green cultivars (V1 and V2), the red-V3 cultivar revealed a greater acclimation to S starvation, as evidenced by relative higher plant growth. In contrast, the green cultivars showed higher capabilities in production and superior quality attributes under +S condition. As for secondary metabolites, sixteen compounds (e.g., sesquiterpene lactones, caffeoyl derivatives, caffeic acid hexose, 5-caffeoylquinic acid (5-OCQA), quercetin and luteolin glucoside derivatives) were annotated in all three cultivars with the aid of HPLC-DAD-MS-based untargeted metabolomics. Sesquiterpene lactone lactucin and anthocyanin cyanidin 3-O-galactoside were only detected in V1 and V3 cultivars, respectively. Based on the analyses, the V3 cultivar was the most potent radical scavenger, while V1 and V2 cultivars exhibited antibacterial activity against Staphylococcus aureus in response to S provision. Our study emphasizes the critical role of S nutrition in plant growth, acclimation, and nutritional quality. The judicious-S application can be adopted as a promising antimicrobial prototype for medical applications.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 307
Author(s):  
Angela Libutti ◽  
Anna Rita Rivelli

In recent years, soil addition with organic amendments, such as biochar and compost, has gained attention as an effective agronomic practice to sustain soil fertility, enhance plant growth and crop yield. Well known are the positive effects of compost on yield of a wide crop varieties, while both positive and negative responses are reported for biochar Therefore, the aim of the study was to verify the effect of biochar mixed with three types of compost on quanti-qualitative response of Swiss chard (Beta vulgaris L. cycla), a leafy green vegetable rich in dietary antioxidants, largely consumed worldwide. A factorial experiment in pots with two factors, including biochar (without biochar and with biochar from vine pruning residues) and compost (without compost, with compost from olive pomace, with vermicompost from cattle manure, and with compost from cattle anaerobic digestate), was setup. Two growth cycles were considered, and a set of quantitative (height of plants, number, area and fresh weight of leaves) and qualitative parameters (carotenoids, chlorophyll, total N, and NO3−content of leaves) were analyzed. Biochar decreased plant growth and NO3− leaf content; on the contrary, it increased total N leaf content, while compost improved all the considered parameters. The interactive effect of biochar and compost was evident only on total N and NO3− leaf content. In our experimental conditions, the compost showed to be the best option to improve Swiss chard growth and increase the content of phytopigments, while the biochar-compost mixtures did not produce the expected effect.


Sign in / Sign up

Export Citation Format

Share Document