Herbage Dry Matter Yields of Switchgrass, Big Bluestem, and Indiangrass with N Fertilization 1

1982 ◽  
Vol 74 (1) ◽  
pp. 47-51 ◽  
Author(s):  
K. E. Hall ◽  
J. R. George ◽  
R. R. Riedl
1976 ◽  
Vol 86 (1) ◽  
pp. 155-161 ◽  
Author(s):  
A. Hadjichristodoulou

SUMMARYThe effect of stage of harvesting on dry-matter (D.M.) yield and chemical composition of barley, wheat and the legumes common vetch (F. sativa), woollypod vetch (F. dasycarpa) and fodder peas (P. sativum) were studied in Cyprus under low rainfall conditions in a series of trials sown in four successive years. Cereals were harvested at the beginning of heading, 50% heading and the milk stage of grain, and legumes at three stages from preflowering to full pod formation, D.M., protein and digestible D.M. yields and percentage D.M. content increased with age, whereas percentage protein content and D.M. digestibility declined. Under moisture stress conditions before and during the harvesting period D.M. yields did not increase significantly with age. Protein content of cereals under low rainfall conditions was higher than that of cereals grown in the U.K. under higher N fertilization levels. Rainfall conditions affected drastically the performance of both cereals and legumes. However, average yields were satisfactory; the barley variety 628 gave 8·98 t/ha, the highest D.M. yield among all cereal and legume varieties.


1990 ◽  
Vol 70 (1) ◽  
pp. 51-60 ◽  
Author(s):  
D. T. GEHL ◽  
L. D. BAILEY ◽  
C. A. GRANT ◽  
J. M. SADLER

A 3-yr study was conducted on three Orthic Black Chernozemic soils to determine the effects of incremental N fertilization on grain yield and dry matter accumulation and distribution of six spring wheat (Triticum aestivum L.) cultivars. Urea (46–0–0) was sidebanded at seeding in 40 kg N ha−1 increments from 0 to 240 kg ha−1 in the first year and from 0 to 200 kg ha−1 in the 2 subsequent years. Nitrogen fertilization increased the grain and straw yields of all cultivars in each experiment. The predominant factor affecting the N response and harvest index of each cultivar was available moisture. At two of the three sites, 91% of the interexperiment variability in mean maximum grain yield was explained by variation in root zone moisture at seeding. Mean maximum total dry matter varied by less than 12% among cultivars, but mean maximum grain yield varied by more than 30%. Three semidwarf cultivars, HY 320, Marshall and Solar, had consistently higher grain yield and grain yield response to N than Glenlea and Katepwa, two standard height cultivars, and Len, a semidwarf. The mean maximum grain yield of HY 320 was the highest of the cultivars on test and those of Katepwa and Len the lowest. Len produced the least straw and total dry matter. The level of N fertilization at maximum grain yield varied among cultivars, sites and years. Marshall and Solar required the highest and Len the lowest N rates to achieve maximum grain yield. The year-to-year variation in rates of N fertilization needed to produce maximum grain yield on a specific soil type revealed the limitations of N fertility recommendations based on "average" amounts and temporal distribution of available moisture.Key words: Wheat (spring), N response, standard height, semidwarf, grain yield


1999 ◽  
Vol 79 (2) ◽  
pp. 277-286 ◽  
Author(s):  
P. A. Bowen ◽  
B. J. Zebarth ◽  
P. M. A. Toivonen

The effects of six rates of N fertilization (0, 125, 250, 375, 500 and 625 kg N ha−1) on the dynamics of N utilization relative to extractable inorganic N in the soil profile were determined for broccoli in three growing seasons. The amount of pre-existing extractable inorganic N in the soil was lowest for the spring planting, followed by the early-summer then late-summer plantings. During the first 2 wk after transplanting, plant dry-matter (DM) and N accumulation rates were low, and because of the mineralization of soil organic N the extractable soil inorganic N increased over that added as fertilizer, especially in the top 30 cm. From 4 wk after transplanting until harvest, DM and N accumulation in the plants was rapid and corresponded to a rapid depletion of extractable inorganic N from the soil. At high N-fertilization rates, leaf and stem DM and N accumulations at harvest were similar among the three plantings. However, the rates of accumulation in the two summer plantings were higher before and lower after inflorescence initiation than those in the spring planting. Under N treatments of 0 and 125 kg ha−1, total N in leaf tissue and the rate of leaf DM accumulation decreased while inflorescences developed. There was little extractable inorganic soil-N during inflorescence development in plots receiving no N fertilizer, yet inflorescence dry weights and N contents were ≥50 and ≥30%, respectively, of the maxima achieved with N fertilization. These results indicate that substantial N is translocated from leaves to support broccoli inflorescence growth under conditions of low soil-N availability. Key words: N translocation, N fertilizer


2017 ◽  
Vol 30 (3) ◽  
pp. 670-678 ◽  
Author(s):  
ROGÉRIO PERES SORATTO ◽  
TIAGO ARANDA CATUCHI ◽  
EMERSON DE FREITAS CORDOVA DE SOUZA ◽  
JADER LUIS NANTES GARCIA

ABSTRACT The objective of this work was to evaluate the effect of plant densities and sidedressed nitrogen (N) rates on nutrition and productive performance of the common bean cultivars IPR 139 and Pérola. For each cultivar, a randomized complete block experimental design was used in a split-plot arrangement, with three replicates. Plots consisted of three plant densities (5, 7, and 9 plants ha-1) and subplots of five N rates (0, 30, 60, 120, and 180 kg ha-1). Aboveground dry matter, leaf macro- and micronutrient concentrations, yield components, grain yield, and protein concentration in grains were evaluated. Lower plant densities (5 and 7 plants m-1) increased aboveground dry matter production and the number of pods per plant and did not reduce grain yield. In the absence of N fertilization, reduction of plant density decreased N concentration in common bean leaves. Nitrogen fertilization linearly increased dry matter and leaf N concentration, mainly at lower plant densities. Regardless of plant density, the N supply linearly increased grain yield of cultivars IPR 139 and Pérola by 17.3 and 52.2%, respectively.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 289 ◽  
Author(s):  
Leonardo Sulas ◽  
Giuseppe Campesi ◽  
Giovanna Piluzza ◽  
Giovanni A. Re ◽  
Paola A. Deligios ◽  
...  

Sulla (Sulla coronaria [L.] Medik), a Mediterranean short-lived legume with tolerance to drought-prone environments, requires inoculation outside its natural habitat. Its leaves are appreciated for the bromatological composition and content of bioactive compounds. However, no information is available regarding the distinct effects of inoculation and nitrogen (N) applications on leaf dry matter (DM), fixed N, and bioactive compounds. Sulla leaves were sampled from the vegetative stage to seed set in Sardinia (Italy) during 2013–2014 and leaf DM, N content, and fixed N were determined. Compared to the best performing inoculated treatments, DM yield and fixed N values of the control only represented 8% to 20% and 2% to 9%, respectively. A significant relationship between fixed N and leaf DM yield was established, reaching 30 kg fixed N t–1 at seed set. Significant variations in leaf atom% 15N excess and %Ndfa quantified decreases in leaf N fixation coupled with N application. Moreover, the petiole content of phenolic compounds markedly increased in the uninoculated control, suggesting deeper investigations on the relationship between bioactive compounds and inoculation treatments. Results highlighted substantial variation in DM, N yields, N-fixation ability, and content of bioactive compounds of sulla leaves caused by inoculation and N fertilization.


1969 ◽  
Vol 67 (2) ◽  
pp. 61-69
Author(s):  
J. Velez-Santiago ◽  
J. A. Arroyo-Aguilu

Five tropical forage grasses: Star (Cynodon nlemfuensis), Transvala digit (Digitaria decumbens), Pangola (Digitaria decumbens) and two Limpos (Hemarthria altissima, Bigalta and Greenalta), were cultivated without irrigation for 1.5 years at the Corozal Agricultural Experiment Substation to study the effects of 3 N fertilization levels and 3 harvest intervals (30, 45, and 60 days) on the green forage (GF), dry forage (DF), and crude protein (CP) yields and on the dry matter (DM), CP, P, and K contents. The soil is a Corozal clay (Uitisol). N levels, as (NH4)2SO4, applied after each harvest, included low, 224; medium, 448; and high, 896 kg/ha/yr. P and K were applied at rates of 112 and 336 kg/ha/yr, respectively. DM content and DF and CP yields increased significantly with longer harvest intervals. The medium N level resulted in the highest CP yields, except in the case of Star grass, in which high N fertilization gave greater CP yield. Bigalta, Star, and Transvala digit cultivars exhibited the highest GF, DF, and CP yields. DF yields (means across the 3 harvest intervals and the 3 N levels) for Bigalta, Greenalta, Transvala, Star, and Pangola grasses were 35,421; 29,209; 31 ,699; 32,383; and 24,461 kg/ha/yr, respectively.


1966 ◽  
Vol 46 (5) ◽  
pp. 561-566
Author(s):  
J. E. Langille ◽  
J. W. G. Nicholson ◽  
F. S. Warren ◽  
R. B. Carson

Spartina pectinata (Link.) was harvested at four growth stages (vegetative, late jointing, heads emerged, and mature seed) to stubble heights of 4.4, 7.6, and 12.7 cm. Nitrogen was applied in late spring to one-half the area at the rate of 84 kg/ha. Maximum dry matter yields were obtained from a single harvest at the seed stage on the N-fertilized plots. Harvesting before the seed stage and N fertilization reduced the stand of Spartina pectinata and increased the stand of Agrostis palustris. The percentage of N, P, and K in the tissue decreased and crude fiber increased as the crop advanced in maturity. The application of N increased the N, P, and K content of the forage but had no effect on the crude fiber content. From these data a practical method of best utilizing this native species was determined.


1996 ◽  
Vol 5 (3) ◽  
pp. 299-310 ◽  
Author(s):  
Jouko Kleemola ◽  
Tuomo Karvonen

According to current scenarios, atmospheric CO2 -concentration ([CO2]) and average air temperature will rise in the future. The predicted longer growing season in Finland would imply that more productive cultivars and even new crop species could be grown. Moreover, higher [CO2] is also likely to increase dry matter production of crops. This study analyzed the growth of spring barley (Hordeum vulgare L.) under ambient and suggested future conditions, and its response to N fertilization. Model simulations of soil temperature and of snow accumulation and melting were also studied. The calibration and validation results showed that the model performed well in simulating snow dynamics, soil temperature, the growth of barley, and the response of crop growth to N fertilization under present conditions. According to the simulation runs, if a cultivar was adapted to the length of the growing period, the increase in dry matter production was 23% in a low estimate scenario of climate change, and 56% in a high estimate scenario under a high level of nitrogen fertilization. The simulation study showed that the shoot dry weight increased by 43%, on average, under high N fertilization (150-200 kg N/ha), but by less (20%) under a low level of N (25-50 kg N/ha) when the conditions under a central scenario for the year 2050 were compared with the present ones.


2017 ◽  
Vol 38 (3) ◽  
pp. 1483
Author(s):  
Loreno Egidio Taffarel ◽  
Paulo Sérgio Rabello de Oliveira ◽  
Euclides Reuter de Oliveira ◽  
Elaine Barbosa Muniz ◽  
Eduardo Eustáquio Mesquita ◽  
...  

Morphological characteristics, dry matter production, and nutritional values of winter forage and grains were evaluated. This study was conducted from April 24, 2012 to November 7, 2013 in the Western Paraná State University (UNIOESTE), Marechal Cândido Rondon, Brazil. Pastures under one grazing and non-grazing conditions were evaluated under 120 kg N ha-1 fertilization split into two 60 kg N ha-1 treatments. Two pastures received 40 kg N ha-1 three times. IPR 126 oat, BRS Tarumã wheat, and IPR 111 triticale were the test crops. Topdressing with 40 or 60 kg N ha-1 did not change morphological characteristics until 60 d after sowing. Pastures under non-grazing that received 120 kg N ha-1 treatments were taller than the controls, whereas those under grazing that received 80 or 120 kg N ha-1 presented with higher leaf production than did the controls. Total average dry matter (DM) production in 2012 and 2013 was, respectively, 5,275 kg ha-1 and 6,270 kg ha-1 for oat, 3,166 kg ha-1 and 7,423 kg ha-1 for wheat, and 4,552 kg ha-1 and 7,603 kg ha-1 for triticale. Split N fertilization did not cause differences in the levels of crude protein (CP), neutral detergent fiber (NDF), and acid detergent fiber (ADF) in the forage. Nevertheless, increases in in vitro dry matter digestibility (IVDMD) were observed in oat and wheat receiving 60 kg N ha-1 during the first graze. IVDMD did not change in oat, wheat, and triticale forages receiving 80 or 120 kg N ha-1 during the second graze. Grazing did not affect the nutritional values of wheat and triticale grains, but reduced those of oat. Therefore, the results of the present study suggest that grazing lengthens the crop cycles, and so allow the staggered sowing of summer crops.


Sign in / Sign up

Export Citation Format

Share Document