scholarly journals Storage-induced deterioration of domestic water quality

2019 ◽  
Vol 9 (2) ◽  
pp. 329-337 ◽  
Author(s):  
C. C. Nnaji ◽  
I. V. Nnaji ◽  
R. O. Ekwule

Abstract Due to the failure of municipal supply systems in many Nigerian cities, residents often resort to long storage of water in large high-density polyethylene (HDPE) tanks in order to reduce water stress. This paper investigated deterioration of the quality of stored water for a period of 35 days. Samples from 20 purposively selected storage tanks in Enugu, Nigeria were collected for analysis. Heterotrophic bacteria, total coliform (TC), enterococci and Escherichia coli were present in 85%, 75%, 40% and 61% of the samples, respectively. E. coli (p < 0.001) and heterotrophic plate count (HPC) (p < 0.001) were significantly higher in storage tanks that were also used for rainwater collection than those that were not. HPC and TC counts in tanks that collect rainwater were twice those of tanks that do not, while E. coli and enterococci counts in tanks that also collect rainwater were three times those of tanks that do not collect rainwater. The most significant change (p < 0.001) in E. coli concentration occurred after 15 days of storage. Cleaning of tanks caused significant reduction of TC counts (p = 0.013), E. coli (p < 0.001), HPC (p < 0.001) and enterococci (p = 0.001). Hence, prolonged storage of water causes significant deterioration of water quality.

2017 ◽  
Vol 13 (2) ◽  
pp. 111-119
Author(s):  
Lela Uyara ◽  
Pieter Kunu ◽  
Silwanus M Talakua

The study aims to determine the quality of clean water in the villages of Wainitu, Batumerah, Amahusu and Halong by comparing the result of water quality analysis with water quality standard. Water quality analysis includes Physiscal, Chemical, and Microbiological parameters. This research uses descriptive method, this method describes systematics, accurate about facts and characteristic of the quality of clean water of each research location. The results showed that the source of clean water in the village of Batumerah did not meet the standard of clean water quality standards indicated by the number of E. coli and the high total coliform.  Keywords: standard quality of clean water, water quality, Wainitu, Batumerah, Amahusu and Halong villages   ABSTRAK Penelitian yang bertujuan untuk menetapkan kualitas air bersih di Desa Wainitu, Batumerah, Amahusu dan Halong, dengan membandingkan hasil analisis kualitas air dengan standar baku mutu air bersih. Analisis kualitas air meliputi parameter fisika, kimia dan mikrobiologi. Penelitian ini menggunakan metode deskriptif; metode ini menggambarkan sicara sistematis, akurat, fakta dan karakteristik mengenai kualitas air bersih di masing-masing lokasi penelitian. Hasil penelitian menunjukkan bahwa sumber air bersih di Desa Batumerah tidak memenuhi standar baku mutu air bersih yang ditunjukkan oleh jumlah E. coli dan total Koliform yang tinggi. Kata Kunci: baku mutu air bersih, Desa Wainitu, Batumerah, Amahusu dan Halong, kualitas air


Author(s):  
H. O. Stanley ◽  
C. J. Ugboma ◽  
M. A. S. Horsfall

Sanitation and water quality are a good measure to judge the living standard and health status of a community. This study focused on the assessment of surface and ground water resources from selected waterfront areas within Port Harcourt metropolis notable for their poor sanitary conditions as receptacles for domestic wastes. Surface water (river) and ground water samples were collected from Abuloma waterfront, Marine Base and Afikpo (Diobu) and their microbiological and physiochemical parameters determined using standard laboratory methods. The microbiological parameters analyzed include total heterotrophic bacteria count (THBC), fecal coliform count, total coliform count, Salmonella count, Shigella count and Vibrio count. The physiochemical parameters monitored include pH, temperature, conductivity, salinity total dissolved solids (TDS), dissolved oxygen (DO), turbidity and biological oxygen demand (BOD). The THBC ranged from 15x101cfu/ml to 1.3x102 cfu/ml; total coliform count ranged from 0 to 17cfu/ml; all the samples had no fecal coliform; the Salmonella count ranged from 0 to 15 cfu/ml; the Shigella count ranged from 0 to 30cfu/ml and Vibrio count ranged from 0 to 15 cfu/ml. The pH values ranged from 5.9-7.6; temperature from 27.5°C to 29.6°C; salinity from 0.012 mg/l to 0.379 mg/l; conductivity from 17.8 s/cm to 19370 s/cm; TDS from 12.3 mg/l to 13610 mg/l; DO from 2.41 mg/l -3.4mg/l, turbidity from 0.24 NTU to 1.11 NTU and BOD from 16 mg/l to 120 mg/l. The results obtained showed that the water resources are not safe and pose risk to human health. These findings highlight the need to improve the sanitary condition of waterfront areas and promote water treatment to ensure the health and safety of the public.


Author(s):  
Susmita Phattepuri ◽  
Prince Subba ◽  
Arjun Ghimire ◽  
Shiv Nandan Sah

Milk is an excellent medium for the growth of many bacteria. This study aimed to determine antibiotic profiling and thermal inactivation of Staphylococcus aureus and Escherichia coli isolated from raw milk of Dharan. Total viable count, total Staphylococcal count, and total coliform count were carried out by conventional microbiological methods. Identification was done on the basis of Gram staining and biochemical tests. The antibiotic susceptibility test of the isolates carried out by the modified Kirby-Baur disc diffusion method. Thermal inactivation of S. aureus and E. coli were carried out by subjecting to thermal treatment in a water bath. Total plate count ranged from 204×104 CFU/mL to 332×105 CFU/mL. Total staphylococcal count and total coliform count ranged from 14×105 CFU/mL to 8×106 CFU/mL and 11×104 CFU/mL to 3×106 CFU/mL respectively. S. aureus showed an increasing resistance patterns towards Ampicillin, Cefotixin, Carbenicillin and Cefotaxime. Ciprofloxacin, Erythromycin, Amikacin, Gentamycin, Azithromycin, and Chloramphenicol were found to be effective against S. aureus. All the E. coli isolates were resistant to Ampicillin and least resistant to Cefotixin. Chloramphenicol, Amikacin, Azithromycin, and Nalidixic acid were found highly effective to E. coli. The D-values for S. aureus at 56°C, 58°C and 60°C were 1.36 min, 1.19 min, and 1.09 min respectively. The Z-value was 14.92°C. While D-values were obtained as 0.98 min, 0.75 min, and 0.57 min for E. coli at 56° C, 58° C and 60° C respectively, and Z-value was 9.75° C. Hence, S. aureus was found to be more heat resistant than E. coli.


2020 ◽  
Vol 14 (1) ◽  
pp. 78-83
Author(s):  
Ali Shahryari ◽  
Charlotte D. Smith ◽  
Abolfazl Amini

Background: The consumption of bottled water globally, including Iran, has increased tremendously in recent years. This study was designed to assess the bacteriological quality of bottled water and its compliance with the drinking water regulations. In addition, we evaluated bottled waters for the presence of a variety of genera of bacteria and the effect of storage duration on the extent of bacterial contamination. Methods: Four hundred samples of bottled water belonging to ten different Iranian brands with various production dates were purchased from supermarkets in Gorgan, Iran, from 2017 to 2018. Bacterial quality of bottled water was assessed using heterotrophic plate count (HPC) followed by usual biochemical tests for identification of bacterial genera, and by the API system. Results: The average HPC of bottled water was 9974 colony-forming units per milliliter (CFU/ml). Twelve genera were isolated, among which Bacillus spp. and Escherichia coli were the most and least abundant, respectively. Statistical analysis showed that there was a positive association between water quality and storage duration so that the highest microbial load occurred within the first to third months after bottling. Furthermore, the highest rate of contamination was observed in May when ambient air temperatures commonly reached 40 °C. Conclusion: The bacterial quality of bottled water was not according to the standard of drinking water quality. This study demonstrated the variation in bacterial levels after bottling, which indicates the presence of waterborne heterotrophic bacteria, some of which can pose severe health risks to consumers.


2006 ◽  
Vol 69 (6) ◽  
pp. 1456-1459 ◽  
Author(s):  
J. D. STOPFORTH ◽  
M. LOPES ◽  
J. E. SHULTZ ◽  
R. R. MIKSCH ◽  
M. SAMADPOUR

Fresh beef samples (n = 1,022) obtained from two processing plants in the Midwest (July to December 2003) were analyzed for levels of microbial populations (total aerobic plate count, total coliform count, and Escherichia coli count) and for the presence or absence of E. coli O157:H7 and Salmonella. A fresh beef cut sample was a 360-g composite of 6-g portions excised from the surface of 60 individual representative cuts in a production lot. Samples of fresh beef cuts yielded levels of 4.0 to 6.2, 1.1 to 1.8, and 0.8 to 1.0 log CFU/g for total aerobic plate count, total coliform count, and E. coli count, respectively. There did not appear to be substantial differences or obvious trends in bacterial populations on different cuts. These data may be useful in establishing a baseline or a benchmark of microbiological levels of contamination of beef cuts. Mean incidence rates of E. coli O157:H7 and Salmonella on raw beef cuts were 0.3 and 2.2%, respectively. Of the 1,022 samples analyzed, cuts testing positive for E. coli O157:H7 included top sirloin butt (0.9%) and butt, ball tip (2.1%) and for Salmonella included short loins (3.4%), strip loins (9.6%), rib eye roll (0.8%), shoulder clod (3.4%), and clod, top blade (1.8%). These data provide evidence of noticeable incidence of pathogens on whole muscle beef and raise the importance of such contamination on product that may be mechanically tenderized. Levels of total aerobic plate count, total coliform count, and E. coli count did not (P ≥ 0.05) appear to be associated with the presence of E. coli O157:H7 and Salmonella on fresh beef cuts. E. O157:H7 was exclusively isolated from cuts derived from the sirloin area of the carcass. Salmonella was exclusively isolated from cuts derived from the chuck, rib, and loin areas of the carcass. Results of this study suggest that contamination of beef cuts may be influenced by the region of the carcass from which they are derived.


1996 ◽  
Vol 59 (7) ◽  
pp. 778-780 ◽  
Author(s):  
KELLY J. KARR ◽  
ELIZABETH A. E. BOYLE ◽  
CURTIS L. KASTNER ◽  
JAMES L. MARSDEN ◽  
RANDALL K. PHEBUS ◽  
...  

Standardized microbiological sampling and testing procedures were developed that can be used throughout the beef slaughter and processing industry to facilitate the collection and any desired compilation of comparative data. Twenty samples each from carcasses (brisket, flank, and rump areas combined); subprimal cuts (clods); lean trim; and cutting and/or conveyor surfaces were collected in three slaughter and processing operations, with the first operation being a preliminary trial and resulting in no reported data. Microbiological analyses for Clostridium perfringens, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., Staphylococcus aureus, Campylobacter jejuni/coli, total coliforms, E. coli Biotype I, and aerobic mesophilic bacteria (aerobic plate count, APC) were performed on all samples by an outside laboratory. The procedures developed were effective in allowing samples to be collected, shipped, and analyzed in the same manner for all operations. From a logistical standpoint, approximately 20 samples each of carcasses, clods, lean trim, and surfaces could be taken within 4 to 6 h by five people. Forty samples each of carcass, clod, lean trim, and conveyor surfaces from two plants tested negative for E. coli O157:H7, Salmonella spp., and Listeria spp., with the exception of L. monocytogenes being isolated from one carcass and one clod sample. APCs and total coliform counts were between 103 to 105 and 102 to 103 CFU/cm2 or CFU/g, respectively, for the 40 samples each of carcasses, clods, and lean trim. APCs for surface swab counts ranged from ≤ 10 to 103 CFU/cm2.


2011 ◽  
Vol 63 (11) ◽  
pp. 2725-2731 ◽  
Author(s):  
J. Y. Lee ◽  
H. J. Kim ◽  
M. Y. Han

A major obstacle to the promotion of rainwater harvesting is chemical and microbiological concerns. To determine its suitability as an alternative water resource, water quality parameters such as pH, turbidity and metal ion concentrations and counted total coliform, Escherichia coli and heterotrophic bacteria were measured. It was observed that the stored rainwater had a neutral average pH and that its turbidity depended on the duration and intensity of the rainfall event. Metal concentrations were within the permissible limits specified in the Korea drinking water standard. In addition, counts of coliform, E. coli and heterotrophic bacteria were higher in the first flush 5 min after the start of the rainfall event. Principal component analysis and correlation analysis through 40 events in 2009 showed that the quality of stored rainwater depends on the conditions of the catchment and storage tank and the antecedent dry period.


2019 ◽  
Vol 16 (3) ◽  
pp. 0560
Author(s):  
Kadhim Hashim Yaseen Al-Araji

The quality of groundwater should be improved by keeping safe water sources from contaminants in protective way by doing regular measuring and checkup before it supplied for usage. Private Wells do not receive the same services that wells supplying the public do. Well owners are responsible for protecting their drinking water. This work was carried out in Badra city, Iraq from December 2017 to May 2018, six wells water were investigated to determine the general characteristics of wells as well as studying the effect of environmental factors on the quality of water. The average of six wells were eleven parameters that is out of permissible limits were EC, Sal., Alk., TH, TDS, Na, Ca, Cl, SO4, Fe, Zn (4402-5183 /cm, 2.76-3.9 ppt, 302-366mg/L, 3164-4248 mg/L, 604-675 mg/L, 375-524 mg/L, 635-871 mg/L, 631-1107 mg/L, 2430-4570 g/L, 114-392 g/L). Respectively, microbiological investigations involved the total coliform, total plate count, as well as the detection for the presence of E. coli, Salmonella and Cholera.  Results shows that there is a significant relation between the increasing of the TDS and Turbidity, TDS gives an indication for the significant increasing of chemical ions. Wells number 3, 4 and 5 showed gave positive results for E.coli growth which as a source of microbial pollution. Detection for the presence of chemical and microbial contaminate is an important alarm since this water has a direct effect on the human and animal's health. Advance method of rapid detection for the well water quality is highly recommended to avoid any health issue and prevent the outbreak of health risk and ecological contaminants.


2019 ◽  
Vol 48 (4) ◽  
pp. 1037-1046
Author(s):  
Youssif Hussin Abdusalam ◽  
IM Sujaul ◽  
Md Abdul Karim ◽  
MG Salah ◽  
M Idris Ali ◽  
...  

Chini lake water is used as a source of water for domestic, industrial and agriculture. The study was carried out to assess the water quality of the lake and surrounding area. Ten sampling sites were selected representing the open water body in the lake. A total of 14 water quality parameters viz.. temperature, EC, TDS, DO, pH, turbidity. BOD, COD, TSS, PO4, SO4, NH4, NO3 and salinity were measured. The lowest WQI value 77 was recorded at site S4, respectively, which were found to be slightly polluted. Considering the NWQS, temperature 30.04°C, EC 31.42 μS/cm, TDS 19.03 mg/l, NO3 - 0.21 mg/l, SO4 - 0.84 mg/l, PO4 - 0.05 mg/l, TSS 12.03 mg/l and salinity 0.03 ppt are categorized under class I, while DO 6.15 mg/l, pH 6.73, turbidity 4.22 NTU, BOD 1.63 mg/l, COD 19.50 mg/l and NH4-N 0.20 mg/l the lake water quality are categorized under class II. Total coliform was 273, 412, 868, 267, 495, 406, 929, 953, 441 and 398 cfu/100 ml at all S1 - S10 sites, respectively. While E. coli was found 13, 7, 13, 5, 7, 5, 6, 106, 10 and 7 cfu/100 ml, respectively at all S1 - S10 sites. The highest number of both total coliform 953 cfu/100ml and E. coli 106 cfu/100ml were observed at site S8. The sources of coliforms and E. coli pollution were wastes from human and animals and domestic effluent, which might be due to lack of improper sanitation systems and effects of land use from surrounding agricultural area.


2020 ◽  
Vol 10 (2) ◽  
pp. 298-308
Author(s):  
Carlos I. Gonzalez ◽  
John Erickson ◽  
Karina A. Chavarría ◽  
Kara L. Nelson ◽  
Amador Goodridge

Abstract Safe water storage is critical to preserve water quality, especially when intermittent piped drinking water supply creates a need for household storage. This study characterized household storage practices and stored water quality in 94 households (N = 94) among four peri-urban neighborhoods in Arraiján, Panama with varying degrees of supply intermittency. We found that 18 (19.1%) households stored drinking water in unsafe containers. Forty-four (47%) samples of household stored drinking water had residual chlorine levels <0.2 mg/L. While 33 (35.1%) samples were positive for total coliform bacteria, only 23 (24.4%) had >10 most probable number (MPN)/100 mL total coliform bacteria. Eight (44%) samples were positive for Escherichia coli, whereas only one (1.3%) sample from the safe containers was positive. Twenty-nine (30.9%) samples had >500 MPN/mL heterotrophic plate count bacteria. These findings suggest that longer supply interruptions were associated with longer storage times and lower chlorine residual, which were associated with higher concentrations of indicator bacteria. This is one of the first studies in the Central-American region to show an association between the lack of turnover (replacement with fresh water) and greater contamination during household water storage. Thus, when drinking water supply is not completely continuous and household storage is required, decreasing the time between supply periods can facilitate safer water storage. Public awareness and education are also recommended to increase hygiene practices during water collection and storage.


Sign in / Sign up

Export Citation Format

Share Document