scholarly journals Salinization/sodification of soil and physiological dynamics of sunflower irrigated with saline–sodic water amending by potassium and farm yard manure

2016 ◽  
Vol 7 (4) ◽  
pp. 476-487 ◽  
Author(s):  
M. Ashraf ◽  
S. Muhammad Shahzad ◽  
N. Akhtar ◽  
M. Imtiaz ◽  
A. Ali

Sunflower (Helianthus annuus L.) plants were grown with saline–sodic water (SSW) by treating with potassium (K @ 100 and 200 mg K2O kg−1 soil) and farm yard manure (FYM @ 5 and 10% of soil, w/w). Irrigation with untreated SSW caused soil salinization/sodification, leading to an increase in electrical conductivity (EC) of 165% and sodium adsorption ratio (SAR) 100% with the subsequent increase of 736% in shoot Na+, a decrease of 52% in shoot K+ and 94% in shoot K+:Na+ratio compared to canal water. SSW also decreased physiological activities: 31% relative water content (RWC), 34% membrane stability index (MSI), 51% protein, 33% chlorophyll and 58% photosynthetic rate compared to canal water. Integrated application of K and FYM, at higher level, decreased soil EC by 54% and SAR 43%, and shoot Na+ 57% with a corresponding improvement in soil organic matter 166%, shoot K+ 360%, shoot K+:Na+ratio 987%, RWC 34%, MSI 37%, protein 60%, photosynthetic rate 102%, superoxide dismutase 92%, peroxidase 78% and catalase 52% compared to SSW without K and/or FYM. In conclusion, exogenous application of K and FYM could be a promising approach to use brackish water in agriculture on a sustainable basis.

2020 ◽  
Vol 2 (2) ◽  
pp. 71-78
Author(s):  
Ehsan Ul Haq ◽  
Fayyaz Ul Hassan ◽  
Mukhtar Ahmed ◽  
Abdul Mannan Hamzah ◽  
Fahad Ali Fayyaz ◽  
...  

The present study was designed to evaluate the effect of different concentrations of Silica gel on the growth and yield of Camelina sativa. A pot experiment was laid out in Completely Randomized Design (CRD) with three replications at Nanotechnology Laboratory, Department of Agronomy, PMAS Arid Agriculture University Rawalpindi. The experiment consisted of 4 levels (0.15 mg/g, 0.30 mg/g, 0.45 mg/g and 0.60 mg/g) of each mentioned nutrient along with control. The data were recorded and analyzed according to recommended procedure for following parameters viz., germination %, root and shoot length (cm), root and shoot biomass (g), relative water content of leaf and leaf membrane stability index. It was observed that 0.60 mg/g silica gel application increased the seed germination (80%), root length (6.67) cm, shoot length (35.33) cm, root biomass (1.7) g, shoot biomass (5.57) g, relative water content of leaf (0.69) and leaf membrane stability index (0.07). The study concluded that significant effect of silica gel application is crucial and important to improve vegetative attributes of false flax.


2017 ◽  
Vol 9 (2) ◽  
pp. 1036-1041 ◽  
Author(s):  
Priyanka Kumari ◽  
H. K. Jaiswal

Cold stress at seedling stage is a major constraint in boro rice production. Nine boro rice lines were crossed in diallel fashion excluding reciprocals to obtain 36 crosses. All the 36 crosses along with parents were grown in nursery in three seasons (boro-2014, kharif-2015 and boro-2015). Performance of seedlings for survival per cent, chlorophyll content, relative water content, membrane stability index was recorded just before transplanting in all the three seasons. Scoring for cold tolerance was done in both boro seasons. Gautam showed highest survival rate over three seasons. Among crosses, IR 64 x Krishna Hamsa showed highest survival (84%) in boro-2014, MTU 1010 x Jaya (86.33%) in boro-2015 and MTU 1010 x Krishna Hamsa (95.67%) in kharif-2015. Jaya x Krishna Hamsa was most cold tolerant cross over both boro seasons. Significant positive correlation was observed among survival per cent, chlorophyll content, relative water content and membrane stability index over seasons.


2011 ◽  
Vol 57 (No. 3) ◽  
pp. 101-107 ◽  
Author(s):  
W.M. Bhutta

Soil salinity and semi-arid and arid climate of Pakistan is a major constraint in agriculture and predominantly in foodstuff production. It limits crop yield and use of land previously uncultivated. Wheat is moderately salt tolerant. A great variation was observed between and within the cultivars (genotypes: S-24 salt tolerant and DN-27 salt sensitive) in relationship to the choice of salinity level (control and treatments: in increment of 25 mol/m<sup>3</sup> NaCl/day to a final level of 80 and 160 mol/m<sup>3 </sup>NaCl into the nutrient solution) that will be used for screening purpose. Relative water content (RWC), membrane stability index and the activities of some antioxidant enzymes were determined after 20 and 40 days of salt stress exposure. As a result of activity enzymes, superoxide dismutase (SOD), peroxidase (POD) and catalase increased in S-24 with the increase of salt stress, while in DN-27 all the enzymes showed constant activity at all the stress levels. Meanwhile, relative water content and membrane stability index decrease the value as well as they increases the stress levels. It can be concluded that all three antioxidant enzymes were limiting factors for these genotypes and these reasons also led to the salt sensitivity in DN-27. Different selection methods should be applied to improve different traits in different conditions in wheat.


2019 ◽  
Vol 76 ◽  
pp. 60-71
Author(s):  
El Sayed M. Desoky ◽  
Seham A. Ibrahim ◽  
Abdel Rahman M. Merwad

Pots experiment was carried out during season 2017 at greenhouse of the Agric. Bot. Dep., Fac. of Agric., Zagazig Univ., Egypt to evaluate the effect of glycine betaine (GB) application under salinity stress (50 and100 mM NaCl) on growth, physio-chemical analysis and yield of snap bean cv. Bronco. A complete randomized blocks design was used in this search with three replications. Growth parameters, chlorophyll content and green pod yield were significantly decreased with subjecting plants to NaCl. However foliar application of GB detoxified the stress generated by NaCl and significantly improved the above mention parameters. Salinity stress increased the electrolyte leakage (EL) and decreased membrane stability index (MSI) and relative water content (RWC). While foliar application of GB was improved MSI and RWC and minimized EL. Proline content and antioxidant enzymes significantly increased in the response to NaCl stress as well as GB application.


2015 ◽  
Vol 48 (1) ◽  
pp. 107-114 ◽  
Author(s):  
S. Parvin ◽  
T. Javadi ◽  
N. Ghaderi

Abstract Drought is one of the critical environmental stresses that affect growth and development of plants. Plants are damaged directly and indirectly under drought stress. Increasing water stress tolerance in plants is crucial. The aim of this study was to investigate the effects of different water stress levels (-1, -5, and -10 bars) and paclobutrazol application (0 and 50 mg-1) on strawberry cv. Paros. According to analyses of variance there were significant effects of drought stress and paclobutrazol application on leaf area, leaf dry weight, leaf relative water content (RWC), cell membrane stability index (MSI), proline and protein content of leaves. Leaf area, leaf dry weight, leaf relative water content and cell membrane stability index decreased in drought stress, especially at -10 bars. Proline and protein contents were enhanced by increasing water stress levels. Paclobutrazol application increased leaf relative water content and cell membrane stability index, proline and protein contents of leaves. Leaf relative water content was 68.77% in -10 bars drought stress that increased to 79% in paclobutrazol treatment. Also, cell membrane stability index was 69.65% in severe drought stress and reached to 77% in paclobutrazol treatment. According to the results pacloburazol is a benefit substance to ameliorate drought stress effects in strawberry cv. Paros.


2015 ◽  
Vol 48 (2) ◽  
pp. 29-49
Author(s):  
M. Almeselmani ◽  
A. Al-Rzak Saud ◽  
K. Al-Zubi ◽  
S. Al-Ghazali ◽  
F. Hareri ◽  
...  

AbstractWater stress, which limits the distribution and productivity of durum wheat (Triticum durum Desf.) in the Mediterranean region, is also considered to be a major factor reducing yield in semiarid regions. Improving drought resistance is thus an important objective in plant breeding programs for rainfed agriculture. The current study was carried out to identify drought-tolerant durum wheat lines among 10 lines and one variety (Douma1, the control) in the first and second settlement zones in the Southern part of Syria and to recognize the most important physiological parameters associated with drought tolerance. Membrane stability index, chlorophyll (chl) content, relative water content and chl fluorescence were recorded at the vegetative and anthesis stages, as were yield and yield components. Data recorded at vegetative and anthesis stages in both zones showed that there were significant differences between all lines growing in the first and second settlement zones and that all characters in the second zone were significantly lower than those in the first zone. Line 1 was superior to Douma1 in terms of membrane stability index, relative water content, chl content and chl florescence, also showing better yield and higher total plant biomass, tiller number/m2, 1000 grain weight and grain number/ear than the control. The ability of wheat cultivars to perform reasonably well in variable rainfall and water-stressed environments is an important trait since it allows for stable production under drought stress. Moreover, prior to genetic manipulation, it is important to characterize the physiological parameters of known drought-tolerant or drought-sensitive wheat cultivars with the objective of better understanding their physiological responses under drought


1989 ◽  
Vol 25 (2) ◽  
pp. 199-205 ◽  
Author(s):  
M. S. Bajwa ◽  
A. S. Josan

SUMMARYIn a field experiment, the effects of irrigating crops alternately with sodic water (high in sodium adsorption ratio and ) and good quality canal water were investigated for six years on a well drained sandy loam (Typic Ustochrept). The irrigation treatments included: irrigation with non-sodic canal water (CW), irrigation with sodic water (SW), CW irrigation alternating with one or two SW irrigations, and two CW irrigations alternating with one SW irrigation. The results showed that the use of sodic water increased the sodium saturation of the soil and decreased rice and wheat yields. The build-up of sodium depended on the number of SW irrigations during the season. The increase in sodium saturation and decline in crop yields were progressive over the years. The improvements in yield due to alternating sodic and non-sodic irrigations compared with the use of sodic water alone increased over the years. Alternating sodic and non-sodic irrigations could therefore be considered a practical way to alleviate the problems caused by sodic water. The number of sodic irrigations during a season should, however, be kept to a minimum and the build-up of sodium in the soil over time should be monitored.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 99
Author(s):  
Surendra Kumar Meena ◽  
Renu Pandey ◽  
Sandeep Sharma ◽  
Gayacharan ◽  
Tarun Kumar ◽  
...  

To understand the physiological basis of tolerance to combined stresses to low phosphorus (P) and drought in mungbean (Vignaradiata (L.) R. Wilczek), a diverse set of 100 accessions were evaluated in hydroponics at sufficient (250 μM) and low (3 μM) P and exposed to drought (dehydration) stress. The principal component analysis and ranking of accessions based on relative values revealed that IC280489, EC397142, IC76415, IC333090, IC507340, and IC121316 performed superior while IC119005, IC73401, IC488526, and IC325853 performed poorly in all treatments. Selected accessions were evaluated in soil under control (sufficient P, irrigated), low P (without P, irrigated), drought (sufficient P, withholding irrigation), and combined stress (low P, withholding irrigation). Under combined stress, a significant reduction in gas exchange traits (photosynthesis, stomatal conductance, transpiration, instantaneous water use efficiency) and P uptake in seed and shoot was observed under combined stress as compared to individual stresses. Among accessions, IC488526 was most sensitive while IC333090 and IC507340 exhibited tolerance to individual or combined stress. The water balance and low P adaptation traits like membrane stability index, relative water content, specific leaf weight, organic acid exudation, biomass, grain yield, and P uptake can be used as physiological markers to evaluate for agronomic performance. Accessions with considerable tolerance to low P and drought stress can be either used as ‘donors’ in Vigna breeding program or cultivated in areas with limited P and water availability or both.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaojing Xu ◽  
Yingli Zhou ◽  
Ping Mi ◽  
Baoshan Wang ◽  
Fang Yuan

AbstractLimonium sinuatum, a member of Plumbaginaceae commonly known as sea lavender, is widely used as dried flower. Five L. sinuatum varieties with different flower colors (White, Blue, Pink, Yellow, and Purple) are found in saline regions and are widely cultivated in gardens. In the current study, we evaluated the salt tolerance of these varieties under 250 mmol/L NaCl (salt-tolerance threshold) treatment to identify the optimal variety suitable for planting in saline lands. After the measurement of the fresh weight (FW), dry weight (DW), contents of Na+, K+, Ca2+, Cl−, malondialdehyde (MDA), proline, soluble sugars, hydrogen peroxide (H2O2), relative water content, chlorophyll contents, net photosynthetic rate, and osmotic potential of whole plants, the salt-tolerance ability from strongest to weakest is identified as Pink, Yellow, Purple, White, and Blue. Photosynthetic rate was the most reliable and positive indicator of salt tolerance. The density of salt glands showed the greatest increase in Pink under NaCl treatment, indicating that Pink adapts to high-salt levels by enhancing salt gland formation. These results provide a theoretical basis for the large-scale planting of L. sinuatum in saline soils in the future.


Sign in / Sign up

Export Citation Format

Share Document