Hygienic risk assessment by monitoring pathogens in municipal sewage

2002 ◽  
Vol 2 (3) ◽  
pp. 23-28 ◽  
Author(s):  
C.-H. von Bonsdorff ◽  
L. Maunula ◽  
R.M. Niemi ◽  
R. Rimhanen-Finne ◽  
M.-L. Hänninen ◽  
...  

The purpose of this study was to monitor the levels of human enteric viruses and enteric protozoa and to relate their presence to the microbes used as hygienic quality indicators in domestic sewage from a small community in Finland during a period of one year. Genome-based sensitive detection methods for the pathogens selected (astro- and Norwalk-like viruses, Giardia and Cryptosporidium) have become available only recently and thus no earlier data was available. The effluent sewage is delivered into a river that serves as raw water for a larger town and the pathogens therefore constitute a health risk. The results showed that all the monitored pathogens could be detected, and that enteric viruses were present at considerable concentrations in sewage. High concentrations of astrovirus in raw sewage were observed during a diarrhea epidemic in the local day-care centre. The presence of viruses did not correlate with the monitored bacterial indicators of faecal contamination (coliforms, E. coli and enterococci) or with bacteriophages (somatic coliphages, F-specific RNA phages and B. fragilis phages). Giardia cysts and Cryptosporidium oocysts were detected from one sample (1/10) each.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12524
Author(s):  
Elizabeth M. Antaki-Zukoski ◽  
Xunde Li ◽  
Bruce Hoar ◽  
John M. Adaska ◽  
Barbara A. Byrne ◽  
...  

Background The presence of Escherichia coli O157:H7 (E. coli O157:H7) super-shedding cattle in feedlots has the potential to increase the overall number (bio-burden) of E. coli O157:H7 in the environment. It is important to identify factors to reduce the bio-burden of E. coli O157 in feedlots by clarifying practices associated with the occurrence of super-shedders in feedlot cattle. Methods The objective of this study is to (1) identify host, pathogen, and management risk factors associated with naturally infected feedlot cattle excreting high concentrations of E. coli O157:H7 in their feces and (2) to determine whether the ingested dose or the specific strain of E. coli O157:H7 influences a super-shedder infection within experimentally inoculated feedlot cattle. To address this, (1) pen floor fecal samples and herd parameters were collected from four feedlots over a 9-month period, then (2) 6 strains of E. coli O157:H7, 3 strains isolated from normal shedder steers and 3 strains isolated from super-shedder steers, were inoculated into 30 one-year-old feedlot steers. Five steers were assigned to each E. coli O157:H7 strain group and inoculated with targeted numbers of 102, 104, 106, 108, and 1010 CFU of bacteria respectively. Results In the feedlots, prevalence of infection with E. coli O157:H7 for the 890 fecal samples collected was 22.4%, with individual pen prevalence ranging from 0% to 90% and individual feedlot prevalence ranging from 8.4% to 30.2%. Three samples had E. coli O157:H7 levels greater than 104 MPN/g feces, thereby meeting the definition of super-shedder. Lower body weight at entry to the feedlot and higher daily maximum ambient temperature were associated with increased odds of a sample testing positive for E. coli O157:H7. In the experimental inoculation trial, the duration and total environmental shedding load of E. coli O157:H7 suggests that the time post-inoculation and the dose of inoculated E. coli O157:H7 are important while the E. coli O157:H7 strain and shedding characteristic (normal or super-shedder) are not. Discussion Under the conditions of this experiment, super-shedding appears to be the result of cattle ingesting a high dose of any strain of E. coli O157:H7. Therefore strategies that minimize exposure to large numbers of E. coli O157:H7 should be beneficial against the super-shedding of E. coli O157:H7 in feedlots.


1995 ◽  
Vol 31 (5-6) ◽  
pp. 291-298
Author(s):  
Sally A. Anderson ◽  
Gillian D. Lewis ◽  
Michael N. Pearson

Specific gene probe detection methods that utilise a non-selective culturing step were tested for the ability to recognise the presence of quiescent enteric bacteria (Escherichia coli and Enterococcus faecalis ) within illuminated freshwater and seawater microcosms. An E. coli specific uidA gene probe and a 23S rRNA oligonucleotide probe for Enterococci were compared with recoveries using membrane filtration and incubation on selective media (mTEC and mE respectively). From these microcosm experiments a greater initial detection (from 4 hours to 1 day) of E. coli and Ent. faecalis using gene probe methods was observed. Additionally, a comparison of E. coli direct viable counts (DVC) in sunlight exposed microcosms with recoveries by selective media and gene probe methods revealed a large number of viable non-culturable cells. This suggests that enumeration of E. coli by a gene probe method is limited by the replication of the bacteria during the initial non-selective enrichment step. The detection of stressed Ent. faecalis by the oligonucleotide gene probe method was significantly greater than recovery on selective mE agar, indicating an Enterococci non-growth phase.


2019 ◽  
Vol 22 (5) ◽  
pp. 346-354
Author(s):  
Yan A. Ivanenkov ◽  
Renat S. Yamidanov ◽  
Ilya A. Osterman ◽  
Petr V. Sergiev ◽  
Vladimir A. Aladinskiy ◽  
...  

Aim and Objective: Antibiotic resistance is a serious constraint to the development of new effective antibacterials. Therefore, the discovery of the new antibacterials remains one of the main challenges in modern medicinal chemistry. This study was undertaken to identify novel molecules with antibacterial activity. Materials and Methods: Using our unique double-reporter system, in-house large-scale HTS campaign was conducted for the identification of antibacterial potency of small-molecule compounds. The construction allows us to visually assess the underlying mechanism of action. After the initial HTS and rescreen procedure, luciferase assay, C14-test, determination of MIC value and PrestoBlue test were carried out. Results: HTS rounds and rescreen campaign have revealed the antibacterial activity of a series of Nsubstituted triazolo-azetidines and their isosteric derivatives that has not been reported previously. Primary hit-molecule demonstrated a MIC value of 12.5 µg/mL against E. coli Δ tolC with signs of translation blockage and no SOS-response. Translation inhibition (26%, luciferase assay) was achieved at high concentrations up to 160 µg/mL, while no activity was found using C14-test. The compound did not demonstrate cytotoxicity in the PrestoBlue assay against a panel of eukaryotic cells. Within a series of direct structural analogues bearing the same or bioisosteric scaffold, compound 2 was found to have an improved antibacterial potency (MIC=6.25 µg/mL) close to Erythromycin (MIC=2.5-5 µg/mL) against the same strain. In contrast to the parent hit, this compound was more active and selective, and provided a robust IP position. Conclusion: N-substituted triazolo-azetidine scaffold may be used as a versatile starting point for the development of novel active and selective antibacterial compounds.


2021 ◽  
Author(s):  
Marion Germain ◽  
Daniel Kneeshaw ◽  
Louis De Grandpré ◽  
Mélanie Desrochers ◽  
Patrick M. A. James ◽  
...  

Abstract Context Although the spatiotemporal dynamics of spruce budworm outbreaks have been intensively studied, forecasting outbreaks remains challenging. During outbreaks, budworm-linked warblers (Tennessee, Cape May, and bay-breasted warbler) show a strong positive response to increases in spruce budworm, but little is known about the relative timing of these responses. Objectives We hypothesized that these warblers could be used as sentinels of future defoliation of budworm host trees. We examined the timing and magnitude of the relationships between defoliation by spruce budworm and changes in the probability of presence of warblers to determine whether they responded to budworm infestation before local defoliation being observed by standard detection methods. Methods We modelled this relationship using large-scale point count surveys of songbirds and maps of cumulative time-lagged defoliation over multiple spatial scales (2–30 km radius around sampling points) in Quebec, Canada. Results All three warbler species responded positively to defoliation at each spatial scale considered, but the timing of their response differed. Maximum probability of presence of Tennessee and Cape May warbler coincided with observations of local defoliation, or provided a one year warning, making them of little use to guide early interventions. In contrast, the probability of presence of bay-breasted warbler consistently increased 3–4 years before defoliation was detectable. Conclusions Early detection is a critical step in the management of spruce budworm outbreaks and rapid increases in the probability of presence of bay-breasted warbler could be used to identify future epicenters and target ground-based local sampling of spruce budworm.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mizuki Ogata ◽  
Reiji Masuda ◽  
Hiroya Harino ◽  
Masayuki K. Sakata ◽  
Makoto Hatakeyama ◽  
...  

AbstractEnvironmental DNA (eDNA) can be a powerful tool for detecting the distribution and abundance of target species. This study aimed to test the longevity of eDNA in marine sediment through a tank experiment and to use this information to reconstruct past faunal occurrence. In the tank experiment, juvenile jack mackerel (Trachurus japonicus) were kept in flow-through tanks with marine sediment for two weeks. Water and sediment samples from the tanks were collected after the removal of fish. In the field trial, sediment cores were collected in Moune Bay, northeast Japan, where unusual blooms of jellyfish (Aurelia sp.) occurred after a tsunami. The samples were analyzed by layers to detect the eDNA of jellyfish. The tank experiment revealed that after fish were removed, eDNA was not present in the water the next day, or subsequently, whereas eDNA was detectable in the sediment for 12 months. In the sediment core samples, jellyfish eDNA was detected at high concentrations above the layer with the highest content of polycyclic aromatic hydrocarbons, reflecting tsunami-induced oil spills. Thus, marine sediment eDNA preserves a record of target species for at least one year and can be used to reconstruct past faunal occurrence.


2020 ◽  
Vol 8 (6) ◽  
pp. 885 ◽  
Author(s):  
Emelia H. Adator ◽  
Claudia Narvaez-Bravo ◽  
Rahat Zaheer ◽  
Shaun R. Cook ◽  
Lisa Tymensen ◽  
...  

This study aimed to compare antimicrobial resistance (AMR) in extended-spectrum cephalosporin-resistant and generic Escherichia coli from a One Health continuum of the beef production system in Alberta, Canada. A total of 705 extended-spectrum cephalosporin-resistant E. coli (ESCr) were obtained from: cattle feces (CFeces, n = 382), catch basins (CBasins, n = 137), surrounding streams (SStreams, n = 59), beef processing plants (BProcessing, n = 4), municipal sewage (MSewage; n = 98) and human clinical specimens (CHumans, n = 25). Generic isolates (663) included: CFeces (n = 142), CBasins (n = 185), SStreams (n = 81), BProcessing (n = 159) and MSewage (n = 96). All isolates were screened for antimicrobial susceptibility to 9 antimicrobials and two clavulanic acid combinations. In ESCr, oxytetracycline (87.7%), ampicillin (84.4%) and streptomycin (73.8%) resistance phenotypes were the most common, with source influencing AMR prevalence (p < 0.001). In generic E. coli, oxytetracycline (51.1%), streptomycin (22.6%), ampicillin (22.5%) and sulfisoxazole (14.3%) resistance were most common. Overall, 88.8% of ESCr, and 26.7% of generic isolates exhibited multi-drug resistance (MDR). MDR in ESCr was high from all sources: CFeces (97.1%), MSewage (96.9%), CHumans (96%), BProcessing (100%), CBasins (70.5%) and SStreams (61.4%). MDR in generic E. coli was lower with CFeces (45.1%), CBasins (34.6%), SStreams (23.5%), MSewage (13.6%) and BProcessing (10.7%). ESBL phenotypes were confirmed in 24.7% (n = 174) ESCr and 0.6% of generic E. coli. Prevalence of bla genes in ESCr were blaCTXM (30.1%), blaCTXM-1 (21.6%), blaTEM (20%), blaCTXM-9 (7.9%), blaOXA (3.0%), blaCTXM-2 (6.4%), blaSHV (1.4%) and AmpC β-lactamase blaCMY (81.3%). The lower AMR in ESCr from SStreams and BProcessing and higher AMR in CHumans and CFeces likely reflects antimicrobial use in these environments. Although MDR levels were higher in ESCr as compared to generic E. coli, AMR to the same antimicrobials ranked high in both ESCr and generic E. coli sub-populations. This suggests that both sub-populations reflect similar AMR trends and are equally useful for AMR surveillance. Considering that MDR ESCr MSewage isolates were obtained without enrichment, while those from CFeces were obtained with enrichment, MSewage may serve as a hot spot for MDR emergence and dissemination.


2016 ◽  
Vol 5 (3) ◽  
Author(s):  
Carlo Pala ◽  
Christian Scarano ◽  
Massimiliano Venusti ◽  
Daniela Sardo ◽  
Daniele Casti ◽  
...  

<em>Ricotta fresca</em> cheese is the product of Sardinian dairy industry most exposed to microbial post-process contamination. Due to its technological characteristics, intrinsic parameters, pH (6.10-6.80) and water activity (0.974-0.991), it represents an excellent substrate for the growth of spoilage and pathogenic microorganisms, which are usually resident in cheese-making plants environments. Generally, <em>ricotta fresca</em> has a shelf life of 5-7 days. For this reason, at industrial level, modified atmosphere packaging (MAP) is used to extend the durability of the product. However, few investigations have been conducted to validate the use of MAP in <em>ricotta fresca</em>. The aim of this work is to evaluate the shelf life of <em>ricotta fresca</em> under MAP. A total of 108 samples were collected from three Sardinian industrial cheese-making plants and analysed within 24 h after packaging and after 7, 14 and 21 days of refrigerated storage. Aerobic mesophilic bacteria, mesophilic and thermophilic cocci and lactobacilli, <em>Enterobacteriaceae</em> and <em>E. coli</em>, <em>L. monocytogenes</em>, <em>Pseudomonas</em> spp., <em>Bacillus cereus</em>, yeasts and moulds, and the chemicalphysical parameters and composition of the product were determined. At the end of the shelf life, <em>Pseudomonas</em> spp. and Enterobacteriaceae reached high concentrations, 5 to 7 and 3 to 6 log<sub>10</sub> colony forming unit g<sup>–1</sup>, respectively. The presence of environmental contaminants indicates that the use of MAP without the appropriate implementation of prerequisite programmes is not sufficient to extend the durability of <em>ricotta fresca</em>. Gas mixture and packaging material should be selected only on the basis of scientific evidence of their effectiveness.


2010 ◽  
Vol 55 (No. 8) ◽  
pp. 359-368 ◽  
Author(s):  
M. Atef Yekta ◽  
F. Verdonck ◽  
W. Van Den Broeck ◽  
BM Goddeeris ◽  
E. Cox ◽  
...  

Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 strains are associated with haemorraghic colitis and haemolytic uremic syndrome (HUS) in humans. Cattle are a reservoir of E. coli O157:H7. We studied the ability of bovine and human lactoferrin, two natural antimicrobial proteins present in milk, to inhibit E. coli O157:H7 growth and attachment to a human epithelial colorectal adenocarcinoma cell line (Caco-2). The direct antibacterial effect of bLF on E. coli O157:H7 was stronger than that of hLF. Nevertheless, both lactoferrins had bacteriostatic effects even at high concentrations (10 mg/ml), suggesting blocking of LF activity by a yet undefined bacterial defence mechanism. Additionally, both lactoferrins significantly inhibited E. coli O157:H7 attachment to Caco-2 cells. However, hLF was more effective than bLF, probably due to more efficient binding of bLF to intelectin present on human enterocytes leading to uptake and thus removal of bLF from the extracellular environment. Inhibition of bacterial attachment to Caco-2 cells was at least partly due to the catalytic effect of lactoferrins on the type III secreted proteins EspA and EspB


2007 ◽  
Vol 5 (2) ◽  
pp. 267-282 ◽  
Author(s):  
Jeremy Olstadt ◽  
James Jay Schauer ◽  
Jon Standridge ◽  
Sharon Kluender

Since 2002, the United States Environmental Protection Agency (USEPA) has approved ten enzyme-based total coliform and E. coli detection tests for examination of drinking water. These tests include: Colilert®, Colilert-18®, Colisure®, m-Coli Blue 24®, Readycult® Coliforms 100, Chromocult®, Coliscan®, E*Colite®, Colitag™ and MI Agar. The utility of the enzyme based test systems is based on both the ability of the test to detect the target organisms at low levels and the ability of the test system to suppress the growth of non-target organisms that might result in false positive results. Differences in the ability of some of these methods to detect total coliform and E. coli, as well as suppress Aeromonas spp., a common cause of “false positive” results, have been observed. As a result, this study was undertaken to elucidate the strengths and weaknesses of each method. Water samples were collected from three geographically and chemically diverse groundwaters in Wisconsin. One-hundred milliliter aliquots were individually spiked with both low concentrations (one to ten organisms) and high concentrations (fifty to one-hundred) of each of five different total coliform organisms (Serratia, Citrobacter, Enterobacter, E. coli, & Klebsiella). These spiked samples were used to test the capability of ten enzyme-based test systems to both detect and enumerate the spiked organisms. In addition, 100 ml samples were independently spiked with two different strains of Aeromonas spp. at six different levels, to assess the ability of each enzyme-based test to suppress Aeromonas spp. Analysis of the data indicated that wide variability exists among USEPA approved tests to detect and quantify total coliforms, as well as suppress Aeromonas spp.


Sign in / Sign up

Export Citation Format

Share Document